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Computational Story Lab:
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Computational Story Lab:

Chris Danforth
Brian Tivnan

I NSF, NASA, MITRE
I 3000 processors + 100 TB storage

at the Vermont Advanced
Computing Core

I 100 TB storage in Danforth’s
office.
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Something of a plan:

I Lecture 1: Complexity; Networks, and Social Search
I Theory, Experiments.

I Lecture 2: Measuring Happiness
I Big Data.

I Lecture 3: Social Contagion and Influence
I Theory, Experiments, Big Data.
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About these slides:
I Three versions (all in pdf):

1. Presentation,
2. Flat Presentation,
3. Compact version (3x2).

I Presentation versions are navigable and hyperlinks
are clickable.

I Web links look like this (�).
I References in slides link to full citation at end. [2]

I Citations contain links to papers in pdf (if available).
I 60 hours of lectures → 3 hours.
I Brought to you by a concoction of LATEX, Beamer,

perl, and madness.

Two graduate level courses:
I Principles of Complex Systems (�), University of Vermont
I Complex Networks (�), University of Vermont

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2012-07Lipari-
http://www.uvm.edu/~pdodds/teaching/courses/2012-07Lipari-
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~cems/mathstat/
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
http://www.uvm.edu
http://www.uvm.edu
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
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The Rise of the Data Scientist: (�)

I Exponential
growth: ∼ 60% per
year.

Big Data Science:
I 2013: year traffic on Internet

estimate to reach 2/3 ZB
(1ZB=103EB=106PB=109TB)

I Large Hadron Collider:
40 TB/second.

I 2016—Large Synoptic
Survey Telescope:
140 TB every 5 days.

I Facebook: ∼ 1011 photos
I Twitter: ∼ 1011 tweets

Data, Data, Everywhere—The Economist, Feb 25,
2010 (�)

No really, that’s a lot of data
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Basic Science ' Describe + Explain:

Lord Kelvin (possibly):
I “To measure is to know.”
I “If you cannot measure it, you

cannot improve it.”

Bonus:
I “X-rays will prove to be a

hoax.”
I “There is nothing new to be

discovered in physics now, All
that remains is more and
more precise measurement.”
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Whimsical but great example of real science:
“How Cats Lap: Water Uptake by Felis catus” (�)
Reis et al., Science, 2010.

Three pieces: Observation + Experiment + Theory
Amusing interview here (�)
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Big Data—Culturomics:

“Quantitative analysis of culture using millions of digitized
books” by Michel et al., Science, 2011 [20]

enter a regime marked by slower forgetting:
Collective memory has both a short-term and a
long-term component.

But there have been changes. The amplitude
of the plots is rising every year: Precise dates are
increasingly common. There is also a greater fo-
cus on the present. For instance, “1880” declined
to half its peak value in 1912, a lag of 32 years. In

contrast, “1973” declined to half its peak by
1983, a lag of only 10 years. We are forgetting
our past faster with each passing year (Fig. 3A).

We were curious whether our increasing
tendency to forget the old was accompanied by
more rapid assimilation of the new (21). We di-
vided a list of 147 inventions into time-resolved
cohorts based on the 40-year interval in which

they were first invented (1800–1840, 1840–1880,
and 1880–1920) (7). We tracked the frequency
of each invention in the nth year after it was
invented as compared to its maximum value and
plotted the median of these rescaled trajectories
for each cohort.

The inventions from the earliest cohort
(1800–1840) took over 66 years from invention
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Fig. 3. Cultural turnover is accelerating. (A) We forget: frequency of “1883”
(blue), “1910” (green), and “1950” (red). Inset: We forget faster. The half-life
of the curves (gray dots) is getting shorter (gray line: moving average). (B) Cultural
adoption is quicker. Median trajectory for three cohorts of inventions from three
different time periods (1800–1840, blue; 1840–1880, green; 1880–1920,
red). Inset: The telephone (green; date of invention, green arrow) and radio
(blue; date of invention, blue arrow). (C) Fame of various personalities born
between 1920 and 1930. (D) Frequency of the 50 most famous people born in

1871 (gray lines; median, thick dark gray line). Five examples are highlighted.
(E) The median trajectory of the 1865 cohort is characterized by four
parameters: (i) initial age of celebrity (34 years old, tick mark); (ii) doubling
time of the subsequent rise to fame (4 years, blue line); (iii) age of peak celebrity
(70 years after birth, tick mark), and (iv) half-life of the post-peak forgetting
phase (73 years, red line). Inset: The doubling time and half-life over time.
(F) The median trajectory of the 25 most famous personalities born between
1800 and 1920 in various careers.
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to widespread impact (frequency >25% of peak).
Since then, the cultural adoption of technology has
become more rapid. The 1840–1880 invention
cohort was widely adopted within 50 years; the
1880–1920 cohort within 27 (Fig. 3B and fig. S7).

“In the future, everyone will be famous for
7.5minutes” –Whatshisname. People, too, rise to
prominence, only to be forgotten (22). Fame can be
tracked by measuring the frequency of a person’s
name (Fig. 3C). We compared the rise to fame of
the most famous people of different eras. We took
all 740,000 people with entries in Wikipedia,
removed cases where several famous individuals
share a name, and sorted the rest by birth date and
frequency (23). For every year from 1800 to 1950,
we constructed a cohort consisting of the 50 most

famous people born in that year. For example, the
1882 cohort includes “Virginia Woolf” and “Felix
Frankfurter”; the 1946 cohort includes “Bill
Clinton” and “Steven Spielberg”. We plotted the
median frequency for the names in each cohort
over time (Fig. 3,D andE). The resulting trajectories
were all similar. Each cohort had a pre-celebrity
period (median frequency <10−9), followed by a
rapid rise to prominence, a peak, and a slow de-
cline.We therefore characterized each cohort using
four parameters: (i) the age of initial celebrity, (ii)
the doubling time of the initial rise, (iii) the age of
peak celebrity, and (iv) the half-life of the decline
(Fig. 3E). The age of peak celebrity has been con-
sistent over time: about 75 years after birth. But
the other parameters have been changing (fig. S8).

Fame comes sooner and rises faster. Between the
early 19th century and the mid-20th century, the
age of initial celebrity declined from 43 to 29
years, and the doubling time fell from 8.1 to 3.3
years. As a result, the most famous people alive
today are more famous—in books—than their
predecessors. Yet this fame is increasingly short-
lived: The post-peak half-life dropped from 120
to 71 years during the 19th century.

We repeated this analysis with all 42,358
people in the databases of the Encyclopaedia
Britannica (24), which reflect a process of expert
curation that began in 1768. The results were
similar (7) (fig. S9). Thus, people are getting more
famous than ever before but are being forgotten
more rapidly than ever.

Fig. 4. Culturomics can be used to
detect censorship. (A) Usage frequen-
cy of “Marc Chagall” in German (red)
as compared to English (blue). (B)
Suppression of Leon Trotsky (blue),
Grigory Zinoviev (green), and Lev
Kamenev (red) in Russian texts,
with noteworthy events indicated:
Trotsky’s assassination (blue arrow),
Zinoviev and Kamenev executed
(red arrow), the Great Purge (red
highlight), and perestroika (gray ar-
row). (C) The 1976 and 1989 Tianan-
men Square incidents both led to
elevated discussion in English texts
(scale shown on the right). Response
to the 1989 incident is largely ab-
sent inChinese texts (blue, scale shown
on the left), suggesting government
censorship. (D) While the Holly-
wood Ten were blacklisted (red
highlight) from U.S. movie studios,
their fame declined (median: thick
gray line). None of them were cred-
ited in a film until 1960’s (aptly
named) Exodus. (E) Artists and writ-
ers in various disciplines were sup-
pressed by the Nazi regime (red
highlight). In contrast, theNazis them-
selves (thick red line) exhibited a
strong fame peak during the war
years. (F) Distribution of suppres-
sion indices for both English (blue)
andGerman (red) for the period from
1933–1945. Three victims of Nazi
suppression are highlighted at left
(red arrows). Inset: Calculation of
the suppression index for “Henri
Matisse”.

天安門

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

A B

C D

E F

14 JANUARY 2011 VOL 331 SCIENCE www.sciencemag.org180

RESEARCH ARTICLE

 o
n 

Ja
nu

ar
y 

14
, 2

01
1

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

http://www.culturomics.org/ (�)
Google Books ngram viewer (�)
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What matters and what’s measurable:
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Science in the age of Big Data:
I Goal: Match Observation with Theory with

Experiment.
I Traditional Engine: Cycle of hypothesis formation

and testing.
I The boost: Data driven detection of stories.

Four Thinkings for Big Data Storytellers:
1. Probabilistic Thinking (statistics)
2. Mechanistic Thinking (statistical physics)
3. Algorithmic Thinking (computer science)
4. Data Visualization Thinking (art, graphic design)

Framing issues:
I “Data Scientist” implies “Describes but does not

explain.”
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Homo narrativus—We are story-telling
machines:

I Mechanisms =
Evolution equations,
algorithms, stories, ...

I “Also, all financial
analysis. And, more
directly, D&D.”

http://xkcd.com/904/ (�)
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Complexity Manifesto:
1. Systems are ubiquitous and systems matter.
2. Consequently, much of science is about

understanding how pieces dynamically fit together.
3. 1700 to 2000 = Golden Age of Reductionism.

I Atoms!, sub-atomic particles, DNA, genes, people, ...

4. Understanding and creating systems (including new
‘atoms’) is the greater part of science/engineering.

5. Universality: systems with quantitatively different
micro details exhibit qualitatively similar macro
behavior.

6. Computing advances make the Science of
Complexity possible:
6.1 We can measure and record enormous amounts of

data, research areas continue to transition from data
scarce to data rich.

6.2 We can simulate, model, and create complex
systems in extraordinary detail.
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Revolution: Big Data & Complex Networks

I Many complex systems
can be viewed as complex networks
of physical or abstract interactions.

I Opens door to mathematical and numerical analysis.
I Mindboggling amount of work published on complex

networks since 1998...
I Why all this ‘new’ research on networks?
I Answer: Incredible Amounts of Data.
I ... largely due to your typical theoretical physicist:

I Piranha physicus

I Hunt in packs.

I Feast on new and interesting ideas
(see chaos, cellular automata, ...)
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Popularity according to Google Scholar:

“Collective dynamics of ‘small-world’ networks” [31]

I Watts and Strogatz
Nature, 1998

I Cited 16,157 times (as of June 19, 2012)

“Emergence of scaling in random networks” [3]

I Barabási and Albert
Science, 1999

I Cited 13,984 times (as of June 19, 2012)
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Networks and creativity:

Lastly, agents that remain inactive for
longer than t time steps are removed from the
network. This rule is motivated by the obser-
vation that agents do not remain in the network
forever: agents age and retire, change careers,
and so on. The removal process enables the
network to reach a steady state after a transient
time. Our results do not depend in the specific
value of t (Materials and Methods).

Through participation in a team, agents
become part of a large network (30). This fact
prompted us to examine the topology of the
network of collaborations among the practi-
tioners of a given field. More specifically,
we asked, BIs there a large connected cluster
comprising most of the agents or is the net-
work composed of numerous smaller clus-
ters?[ A large connected cluster would be
supporting evidence for the so-called invisible
college, the web of social and professional
contacts linking scientists across universities
proposed by de Solla Price (31) and Merton
(32). A large number of small clusters would
be indicative of a field made up of isolated
schools of thought. For all five fields con-
sidered here, we find that the network con-
tains a large connected cluster.

As is typically done in the study of per-
colation phase transitions (33), we use the
fraction S of agents that belong to the largest
cluster of the network to quantify the tran-
sition between these two regimes: invisible
college or isolated schools. We explore sys-
tematically the (p,q) parameter space of the
model. We find that the system undergoes
a percolation transition (33) at a critical line,
pc(m,q). That is, the system experiences a
sharp transition from a multitude of small
clusters to a situation in which one large clus-
ter, comprising a substantial fraction S of the
individuals, emerges: the so-called giant com-
ponent (Fig. 3). The transition line pc(m,q)
therefore determines the tipping point for the
emergence of the invisible college (34). Our
analysis shows that the existence of this
transition is independent of the average number
of agents bmÀ in a collaboration, although the
precise value of pc(m,q) does depend on m.

The proximity to the transition line, which
depends on the distribution of the different
types of links, determines the structure of the
largest cluster (Fig. 3A). In the vicinity of the
transition, the largest cluster has an almost
linear or branched structure (Fig. 3A) ( p 0
0.30). As one moves toward larger p, the
largest cluster starts to have more and more
loops (Fig. 3A) (p 0 0.35), and, eventually, it
becomes a densely connected network (Fig.
3A) ( p 0 0.60).

Networks with the same fraction, S, of
nodes in the largest cluster do not necessarily
correspond to networks with identical prop-
erties. Each point in the (p,q) parameter space
is characterized by both S and the fraction,
fR, of repeat incumbent-incumbent links. For

example, in Fig. 3C, the line fR 0 0.32 cor-
responds to those values of p and q for which
32% of all links in new teams are between
repeat collaborators (35). The fR has a nota-
ble impact on the dynamics of the network.
When fR is large, collaborations are firmly
established, and therefore the structure of the
network changes very slowly. In contrast, low
values of fR correspond to enterprises with
high turnover and very fast dynamics. Inter-
mediate values of fR are related to situations
in which collaboration patterns with peers are
fluid (Materials and Methods).

For each of the five fields for which we
have empirical data, we measure the relative
size of the giant component S (Materials and
Methods). For all fields considered, S is
larger than 50% (Table 1). This result pro-
vides quantitative evidence for the existence
of an invisible college in all the fields. In-
triguingly, the relative sizes of the giant com-

ponent is similar for three of the four fields
considered: S 0 0.70, S 0 0.68, and S 0 0.75
for BMI, social psychology, and ecology,
respectively. However, for astronomy S was
significantly larger (0.92), whereas for eco-
nomics it was significantly smaller (0.54).

To gain further insight in the structure of
collaboration networks, we used our model
to estimate the values of p and q for each
field. Given the temporal sequence of teams
producing the network of collaborations, one
can calculate the fraction of incumbents and
the fraction of repeat incumbent-incumbent
links. These fractions and the model enable
us to then estimate the values of p and q that
are consistent with the data (36).

We estimated p and q for each field and
then simulated the model to predict the key
properties of the network of collaborations,
including the degree distribution of the
network and the fraction S of nodes in the

Fig. 2. Modeling the emergence of collaboration networks in creative enterprises. (A) Creation of a
team with m 0 3 agents. Consider, at time zero, a collaboration network comprising five agents, all
incumbents (blue circles). Along with the incumbents, there is a large pool of newcomers (green
circles) available to participate in new teams. Each agent in a team has a probability p of being
drawn from the pool of incumbents and a probability 1 j p of being drawn from the pool of new-
comers. For the second and subsequent agents selected from the incumbents’ pool: (i) with probability
q, the new agent is randomly selected from among the set of collaborators of a randomly selected
incumbent already in the team; (ii) otherwise, he or she is selected at random among all incumbents in
the network. For concreteness, let us assume that incumbent 4 is selected as the first agent in the new
team (leftmost box). Let us also assume that the second agent is an incumbent, too (center-left box). In
this example, the second agent is a past collaborator of agent 4, specifically agent 3 (center-right box).
Lastly, the third agent is selected from the pool of newcomers; this agent becomes incumbent 6
(rightmost box). In these boxes and in the following panels and figures, blue lines indicate newcomer-
newcomer collaborations, green lines indicate newcomer-incumbent collaborations, yellow lines indi-
cate new incumbent-incumbent collaborations, and red lines indicate repeat collaborations. (B) Time
evolution of the network of collaborations according to the model for p 0 0.5, q 0 0.5, and m 0 3.
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The Evolution of Economies:

I Hidalgo et al.’s
“The Product
Space Conditions
the Development
of Nations” [16]

I How do products
depend on each
other, and how
does this network
evolve?

I How do countries
depend on each
other for water,
energy, people
(immigration),
investments?
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Networks of diseases:

I The human disease and disease gene networks
(Goh et al., 2007):
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Fig. 2. The HDN and the DGN. (a) In the HDN, each node corresponds to a distinct disorder, colored based on the disorder class to which it belongs, the name
of the 22 disorder classes being shown on the right. A link between disorders in the same disorder class is colored with the corresponding dimmer color and links
connecting different disorder classes are gray. The size of each node is proportional to the number of genes participating in the corresponding disorder (see key),
and the link thickness is proportional to the number of genes shared by the disorders it connects. We indicate the name of disorders with !10 associated genes,
as well as those mentioned in the text. For a complete set of names, see SI Fig. 13. (b) In the DGN, each node is a gene, with two genes being connected if they
are implicated in the same disorder. The size of each node is proportional to the number of disorders in which the gene is implicated (see key). Nodes are light
gray if the corresponding genes are associated with more than one disorder class. Genes associated with more than five disorders, and those mentioned in the
text, are indicated with the gene symbol. Only nodes with at least one link are shown.
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Disease contagion:
“Modeling the Worldwide Spread of Pandemic Influenza:
Baseline Case and Containment Interventions” Colizza et al.,
PLoS Medicine 2007. [10]

and 8% in cooperative strategies I and II, respectively. The
number of courses provided by the prepared countries is
assumed to be collected in a global stockpile to be
redistributed worldwide to the countries that experience an
outbreak. In the Text S1 we also report simulation results in
which the donated courses are instead preemptively deployed

in each country proportionally to the population size. The
first method is most effective in that it allows the flexible
deployment of AV drugs where there is an actual need.
Symptomatic cases receive the treatment with rate pAV as long
as AV drugs are still available, either from the global stockpile
or from the country stockpile. The difference between

Figure 6. Importance of Air Travel in the Worldwide Spread of Pandemic Influenza

The two snapshots show the countries in orange that have a nonnull probability of being infected by the time Vietnam (seeded country) experiences an
attack rate of 10!6 (A) and 10!5 (B) cases. Results refer to a pandemic originated in Hanoi in October with R0¼ 1.9, with the assumption of unlimited AV
supplies available. A country is defined as infected (experiencing an outbreak) if at least one generation of secondary cases occurs. Although the
number of cases inside Vietnam is very low, the virus has already propagated out of the initial borders to other countries, thus providing several
different seeds for the worldwide spread of the disease. Maps are obtained from open source geographic data and plotted with ArcGIS software.
doi:10.1371/journal.pmed.0040013.g006

PLoS Medicine | www.plosmedicine.org January 2007 | Volume 4 | Issue 1 | e130104
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Social Contagion:
Controversial work by Fowler and Christakis et al.
on social contagion of:

images in Figure 1 generates a matrix of shortest network path
distances from each node to all other nodes in the network and
repositions nodes so as to reduce the sum of the difference between
the plotted distances and the network distances (Kamada & Kawai,
1989). The fundamental pattern of ties in a social network (known
as the “topology”) is fixed, but how this pattern is visually ren-
dered depends on the analyst’s objectives.

Results

In Figure 1, we show a portion of the social network, which
demonstrates a clustering of moderately lonely (green nodes) and
very lonely (blue nodes) people, especially at the periphery of the
network. In the statistical models, the relationships between lone-
liness and number of social contacts proved to be negative and
monotonic, as illustrated in Figure 1 and documented in Table 3.

To determine whether the clustering of lonely people shown in
Figure 1 could be explained by chance, we implemented the
following permutation test: We compared the observed network
with 1,000 randomly generated networks in which we preserved
the network topology and the overall prevalence of loneliness but

in which we randomly shuffled the assignment of the loneliness
value to each node (Szabo & Barabasi, 2007). For this test, we
dichotomized loneliness to be zero if the respondent said they were
lonely 0–1 days the previous week, and one otherwise. If cluster-
ing in the social network is occurring, then the probability that an
LP is lonely, given that an FP is lonely, should be higher in the
observed network than in the random networks. This procedure
also allows us to generate confidence intervals and measure how
far, in terms of social distance, the correlation in loneliness be-

Figure 1. Loneliness clusters in the Framingham Social Network. This graph shows the largest component of
friends, spouses, and siblings at Exam 7 (centered on the year 2000). There are 1,019 individuals shown. Each
node represents a participant, and its shape denotes gender (circles are female, squares are male). Lines between
nodes indicate relationship (red for siblings, black for friends and spouses). Node color denotes the mean number
of days the focal participant and all directly connected (Distance 1) linked participants felt lonely in the past
week, with yellow being 0–1 days, green being 2 days, and blue being greater than 3 days or more. The graph
suggests clustering in loneliness and a relationship between being peripheral and feeling lonely, both of which
are confirmed by statistical models discussed in the main text.

Table 3
Mean Total Number of Social Contacts for People in Each of
the Four Loneliness Categories

Variable
M no. of social contacts

(friends and family combined) SE

Felt lonely 0–1 days last week 4.03 0.05
Felt lonely 1–2 days last week 3.88 0.11
Felt lonely 3–4 days last week 3.76 0.21
Felt lonely 5–7 days last week 3.42 0.28

981STRUCTURE AND SPREAD OF LONELINESS

I Obesity [8]

I Smoking
cessation [9]

I Happiness [13]

I Loneliness [7]

One of many questions:
How does the (very) sparse sampling of a real social
network affect their findings?
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From here (�), the linking of people (roughly) according
to the Wikipedia:

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://griffsgraphs.com/2012/07/03/graphing-every-idea-in-history/
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How people move around:

with r0g~5:8 km, br5 1.656 0.15 and k5 350km (Fig. 1d, see

Supplementary Information for statistical validation). Lévy flights
are characterized by a high degree of intrinsic heterogeneity, raising
the possibility that equation (2) could emerge from an ensemble of
identical agents, each following a Lévy trajectory. Therefore, we
determined P(rg) for an ensemble of agents following a random walk
(RW), Lévy flight (LF) or truncated Lévy flight (TLF) (Fig. 1d)8,12,13.
We found that an ensemble of Lévy agents display a significant degree
of heterogeneity in rg; however, this was not sufficient to explain the
truncated power-law distribution P(rg) exhibited by the mobile
phone users. Taken together, Fig. 1c and d suggest that the difference
in the range of typical mobility patterns of individuals (rg) has a
strong impact on the truncated Lévy behaviour seen in equation
(1), ruling out hypothesis A.

If individual trajectories are described by an LF or TLF, then
the radius of gyration should increase with time as rg(t), t3/(21 b)

(ref. 21), whereas, for an RW, rg(t), t1/2; that is, the longer we
observe a user, the higher the chance that she/he will travel to areas
not visited before. To check the validity of these predictions, we
measured the time dependence of the radius of gyration for users
whose gyration radius would be considered small (rg(T)# 3 km),
medium (20, rg(T)# 30 km) or large (rg(T). 100 km) at the end
of our observation period (T5 6months). The results indicate that

the time dependence of the average radius of gyration of mobile
phone users is better approximated by a logarithmic increase, not
only a manifestly slower dependence than the one predicted by a
power law but also one that may appear similar to a saturation
process (Fig. 2a and Supplementary Fig. 4).

In Fig. 2b, we chose users with similar asymptotic rg(T) after
T5 6months, and measured the jump size distribution P(Drjrg)
for each group. As the inset of Fig. 2b shows, users with small rg travel
mostly over small distances, whereas those with large rg tend to
display a combination of many small and a few larger jump sizes.
Once we rescaled the distributions with rg (Fig. 2b), we found that the
data collapsed into a single curve, suggesting that a single jump size
distribution characterizes all users, independent of their rg. This
indicates that P Dr rg

!!" #
*r{a

g F Dr
$
rg

" #
, where a< 1.26 0.1 and

F(x) is an rg-independent function with asymptotic behaviour, that
is, F(x), x2a for x, 1 and F(x) rapidly decreases for x? 1.
Therefore, the travel patterns of individual users may be approxi-
mated by a Lévy flight up to a distance characterized by rg. Most
important, however, is the fact that the individual trajectories are
bounded beyond rg; thus, large displacements, which are the source
of the distinct and anomalous nature of Lévy flights, are statistically
absent. To understand the relationship between the different expo-
nents, we note that themeasured probability distributions are related

Figure 1 | Basic human mobility patterns. a, Week-long trajectory of 40
mobile phone users indicates that most individuals travel only over short
distances, but a few regularly move over hundreds of kilometres. b, The
detailed trajectory of a single user. The different phone towers are shown as
green dots, and the Voronoi lattice in grey marks the approximate reception
area of each tower. The data set studied by us records only the identity of the
closest tower to amobile user; thus, we can not identify the position of a user
within a Voronoi cell. The trajectory of the user shown in b is constructed
from 186 two-hourly reports, during which the user visited a total of 12
different locations (tower vicinities). Among these, the user is found on 96
and 67 occasions in the two most preferred locations; the frequency of visits

for each location is shown as a vertical bar. The circle represents the radius of
gyration centred in the trajectory’s centre of mass. c, Probability density
function P(Dr) of travel distances obtained for the two studied data sets D1

and D2. The solid line indicates a truncated power law for which the
parameters are provided in the text (see equation (1)). d, The distribution
P(rg) of the radius of gyration measured for the users, where rg(T) was
measured after T5 6 months of observation. The solid line represents a
similar truncated power-law fit (see equation (2)). The dotted, dashed and
dot-dashed curves show P(rg) obtained from the standard null models (RW,
LF and TLF, respectively), where for the TLF we used the same step size
distribution as the one measured for the mobile phone users.
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time. Figure 1b shows secondary reports of bank notes with initial
entry at Omaha that have dispersed for times T . 100 days (with an
average time kTl ¼ 289 days). Only 23.6% of the bank notes travelled
farther than 800 km, whereas 57.3% travelled an intermediate dis-
tance 50 , r , 800 km, and a relatively large fraction of 19.1%
remained within a radius of 50 km, even after an average time of
nearly one year. From the computed value Teq < 68 days, a much
higher fraction of bills is expected to reach the metropolitan areas of
the West coast and the New England states after this time. This is
sufficient evidence that the simple Lévy flight picture for dispersal is
incomplete. What causes this attenuation of dispersal?
Two alternative explanations might account for this effect. The

slowing down might be caused by strong spatial inhomogeneities of
the system. People might be less likely to leave large cities than for
example, suburban areas. Alternatively, long periods of rest might be
an intrinsic temporal property of dispersal. In asmuch as an algebraic
tail in spatial displacements yields superdiffusive behaviour, a tail in
the probability density f(t) for times t between successive spatial
displacements of an ordinary randomwalk can lead to subdiffusion15

(see Supplementary Information). Here, the ambivalence between
scale-free spatial displacements and scale-free periods of rest can be
responsible for the observed attenuation of superdiffusion.
In order to address this issue we investigated the relative pro-

portion Pi
0ðtÞ of bank notes which are reported in a small (20 km)

radius of the initial entry location i as a function of time (Fig. 1d).
The quantity Pi

0ðtÞ estimates the probability of a bank note being
reported at the initial location at time t. We computed Pi

0ðtÞ for
metropolitan areas, cities of intermediate size and small towns: for all
classes we found the asymptotic behaviour P0(t) , At2h, with the
same exponent h ¼ 0.6 ^ 0.03, which indicates that waiting time
and dispersal characteristics are universal. Notice that for a pure
Lévy flight with index b in two dimensions, P0(t) scales with time
as t22/b (dashed red line)15. For b < 0.6 (as suggested by Fig. 1c) this
implies h < 3.33. This is a fivefold steeper decrease than observed,
which clearly shows that dispersal cannot be described by a pure Lévy
flight. The measured decay is even slower than the decay expected
from ordinary two-dimensional diffusion (h ¼ 1, dashed black line).
Therefore, we conclude that the slow decay in P0(t) reflects the effect

Figure 1 | Dispersal of bank notes and humans on geographical scales.
a, Relative logarithmic densities of population (cP ¼ logrP/krPl), report
(cR ¼ logrR/krRl) and initial entry (c IE ¼ logr IE/kr IEl) as functions of
geographical coordinates. Colour-code shows densities relative to the
nationwide averages (3,109 counties) of krPl ¼ 95.15, krRl ¼ 0.34 and
kr IEl ¼ 0.15 individuals, reports and initial entries per km2, respectively.
b, Trajectories of bank notes originating from four different places. City
names indicate initial location, symbols secondary report locations. Lines
represent short-time trajectories with travelling time T , 14 days. Lines are
omitted for the long-time trajectories (initial entry in Omaha) with
T . 100 days. The inset depicts a close-up view of the New York area. Pie
charts indicate the relative number of secondary reports coarsely sorted by
distance. The fractions of secondary reports that occurred at the initial entry
location (dark), at short (0 , r , 50 km), intermediate (50 , r , 800 km)
and long (r . 800 km) distances are ordered by increasing brightness of hue.
The total number of initial entries are N ¼ 2,055 (Omaha), N ¼ 524
(Seattle), N ¼ 231 (New York), N ¼ 381 (Jacksonville). c, The short-time

dispersal kernel. The measured probability density function P(r) of
traversing a distance r in less than T ¼ 4 days is depicted in blue symbols.
It is computed from an ensemble of 20,540 short-time displacements. The
dashed black line indicates a power law P(r),r2(1 þ b) with an exponent of
b ¼ 0.59. The inset shows P(r) for three classes of initial entry locations
(black triangles for metropolitan areas, diamonds for cities of intermediate
size, circles for small towns). Their decay is consistent with the measured
exponent b ¼ 0.59 (dashed line). d, The relative proportion P0(t) of
secondary reports within a short radius (r0 ¼ 20 km) of the initial entry
location as a function of time. Blue squares show P0(t) averaged over 25,375
initial entry locations. Black triangles, diamonds, and circles show P0(t) for
the same classes as c. All curves decrease asymptotically as t2h with an
exponent h ¼ 0.60 ^ 0.03 indicated by the blue dashed line. Ordinary
diffusion in two dimensions predicts an exponent h ¼ 1.0 (black dashed
line). Lévy flight dispersal with an exponent b ¼ 0.6 as suggested by b
predicts an even steeper decrease, h ¼ 3.33 (red dashed line).
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I Study movement and
interactions of people.

I Brockmann et al. [6] “Where’s
George” study.

I Barabasi’s group: tracking
movement via cell phones [14].
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Three broad network classes:

1. Physical networks

I River networks
I Neural networks
I Trees and leaves
I Blood networks

I The Internet
I Road networks
I Power grids

I Distribution (branching) vs. redistribution (cyclical)
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Three broad network classes:

2. Interaction
networks

I Biochemical
networks

I Gene-protein
networks

I Food webs: who
eats whom

I The World Wide
Web (?)

I Airline networks
I The Media
I Paper citations

datamining.typepad.com (�)
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Three broad network classes:

2. Interaction
networks: social
networks

I Snogging
I Friendships

II Boards and
directors

I Organizations
I Facebook
I Twitter

(Bearman et al., 2004)

I ‘Remotely sensed’ by: email activity, instant
messaging, phone logs (*cough*).
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Four broad network classes:
3. Relational networks

I Consumer purchases
(Wal-Mart: > petabyte = 1015 bytes)

I Thesauri: Networks of words generated by meanings
I Knowledge/Databases/Ideas
I Metadata—Tagging: flickr (�) bit.ly (�),
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A notable feature of large-scale networks:
I Graphical renderings are often just a big mess.

⇐ Typical hairball

I number of nodes N = 500

I number of edges m = 1000

I average degree 〈k〉 = 4

I And even when renderings somehow look good:
“That is a very graphic analogy which aids
understanding wonderfully while being, strictly
speaking, wrong in every possible way”
said Ponder [Stibbons] —Making Money, T. Pratchett.

I We need to extract digestible, meaningful aspects.
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The Theory of Anything:

Fluids mechanics:
I Fluid mechanics = One of the great successes of

understanding complex systems.
I Navier-Stokes equations: micro-to-macro system

evolution.
I Yesness: Observations + Experiment + Theory
I Works for many very different ‘fluids’:

I the atmosphere,
I oceans,
I blood,
I galaxies,
I the earth’s mantle...
I and ball bearings on lattices...?
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Lattice gas models

Collision rules in 2-d on a hexagonal lattice:

I Lattice matters... Only hexagonal lattice works in 2-d.
I No ‘good’ lattice in 3-d.
I Upshot: play with ‘particles’ of a system to obtain

new or specific macro behaviours.
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Hexagons—Honeycomb: (�)

I Orchestrated? Or an accident of bees working hard?
I See “On Growth and Form” by D’Arcy Wentworth

Thompson (�). [27, 28]
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Hexagons—Giant’s Causeway: (�)

http://newdesktopwallpapers.info
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Hexagons—Giant’s Causeway: (�)

http://www.physics.utoronto.ca/
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Hexagons run amok:

I Graphene (�): single layer of
carbon molecules in a perfect
hexagonal lattice (super strong).

I Chicken wire (�) . . .
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Symmetry Breaking

Philip Anderson (�)—“More is Different,” Science, 1972 [2]

I Argues against idea that
the only real scientists
are those working on
the fundamental laws.

I Symmetry breaking →
different laws/rules at
different scales...

(2006 study → “most creative physicist in the world” (�))
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Symmetry Breaking

“Elementary entities of science X obey the laws of
science Y”

I X
I solid state or

many-body physics
I chemistry

I molecular biology
I cell biology

vdots
I psychology
I social sciences

I Y
I elementary particle

physics
I solid state

many-body physics
I chemistry
I molecular biology
...

I physiology
I psychology
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Symmetry Breaking

Anderson:
[the more we know about] “fundamental laws, the less
relevance they seem to have to the very real problems of
the rest of science.”

Scale and complexity thwart the constructionist
hypothesis.

Accidents of history and path dependence (�) matter.

More is different:

http://xkcd.com/435/ (�)
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A real science of complexity:

A real theory of everything anything:
1. Is not just about the ridiculously small stuff...
2. It’s about the increase of complexity

Symmetry breaking/
Accidents of history

vs. Universality

I Second law of thermodynamics: we’re toast in the
long run.

I So how likely is the local complexification of structure
we enjoy?

I How likely are the Big Transitions?
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Complexification—the Big Transitions:

I Big Bang.
I Big Random-

ness.
I Big Replicate.
I Big Life.
I Big Evolve.

I Big Word.
I Big Story.
I Big

Number.
I Big God.
I Big Make.

I Big Science.
I Big Data.
I Big Information.
I Big Algorithm.
I Big Connection.
I Big Social.
I Big Awareness.
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Complex Sociotechnical systems:

Sociotechnical phenomena and algorithms:
I Change: How do social movements begin & evolve?
I Performance: How does collective problem solving

best work?
I Contagion: How does information move through

social networks?
I Elevation: Which rules give the best ‘game of

society?’

I What can people and computers do together?
(Google!)

I Play Project: Use Play + Crunch (or Carbon and
Silicon) to solve problems. Which problems?
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Play and Crunch—Foldit:

players were particularly adept at solving puzzles requiring substan-
tial backbone remodelling to bury exposed hydrophobic residues
into the protein core (Fig. 2). When a hydrophobic residue points
outwards into solvent, and no corresponding hole within the core is
evident, stochastic Monte Carlo trajectories are unlikely to sample
the coordinated backbone and side-chain shifts needed to bury the
residue properly in the core. By adjusting the backbone to allow the
exposed hydrophobic residue to pack properly in the core, players
were able to solve these problems in a variety of blind scenarios
including a register shift and a remodelled loop (Fig. 2a, b), a rotated
helix (Fig. 2c), two remodelled loops (Fig. 2d), and a helix rotation
and remodelled loop (Fig. 2e).

Players were also able to restructure b-sheets to improve hydro-
phobic burial and hydrogen bond quality. Automated methods have
difficulty performing major protein restructuring operations to
change b-sheet hydrogen-bond patterns, especially once the solution

has settled in a local low-energy basin. Players were able to carry out
these restructuring operations in such scenarios as strand swapping
(Fig. 3) and register shifting (Fig. 2a). In one strand-swap puzzle,
Foldit players were able to get within 1.1 Å of the native structure,
with the top-scoring Foldit prediction being 1.4 Å away. A superposi-
tion between the starting Foldit puzzle, the top-scoring Foldit solu-
tion, and model 1 of the native NMR structure 2kpo (Protein Data
Bank) are shown in Fig. 3b. Rosetta’s rebuild and refine protocol,
however, was unable to get within 2 Å of the native structure (Fig. 3a,
yellow points). This example highlights a key difference between
humans and computers. As shown in Fig. 3c, solving the strand-swap
problem required substantially unravelling the structure (Fig. 3c,
bottom), with a corresponding unfavourable increase in energy
(Fig. 3c, top). Players persisted with this reconfiguration despite the
energy increase because they correctly recognized that the swap could
ultimately lead to lower energies. In contrast, although the Rosetta
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7

8

9

11
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5

Figure 1 | Foldit screenshot illustrating tools and visualizations. The
visualizations include a clash representing atoms that are too close (arrow 1);
a hydrogen bond (arrow 2); a hydrophobic side chain with a yellow blob
because it is exposed (arrow 3); a hydrophilic side chain (arrow 4); and a
segment of the backbone that is red due to high residue energy (arrow 5). The
players can make modifications including ‘rubber bands’ (arrow 6), which
add constraints to guide automated tools, and freezing (arrow 7), which

prevents degrees of freedom from changing. The user interface includes
information about the player’s current status, including score (arrow 8); a
leader board (arrow 9), which shows the scores of other players and groups;
toolbars for accessing tools and options (arrow 10); chat for interacting with
other players (arrow 11); and a ‘cookbook’ for making new automated tools
or ‘recipes’ (arrow 12).

Table 1 | Blind data set

Puzzle ID Foldit Ca r.m.s.d. Rebuild and refine Ca
r.m.s.d.

Native Method Number of residues Figure(s)

986875 1.4 4.5 2kpo NMR 99 3a–c, Supplementary 4
986698 1.8 3.7 2kky NMR 102 3d, e
986836 5.7 6.6 3epu X-ray 136 2c, Supplementary 6d
987088 3.5 4.3 2kpt NMR 116 2a, b, Supplementary 6a, b
987162 4.5 5.2 3lur X-ray 158 Supplementary 6c
987076 3.3 3.5 2kpm NMR 81 2e, Supplementary 5c
986629 3.5 3.3 2kk1 NMR 135 Supplementary 5b
987145 2.6 2.3 3nuf X-ray 105 2d, Supplementary 5a
986844 6.9 5.8 2ki0 NMR 36 Supplementary 10a
986961 10.6 5.7 2knr NMR 118 Supplementary 10b

A listing of all the Foldit puzzles run in the blind data set. A Ca r.m.s.d. comparison to the native structure is given between the best-scoring model produced by Foldit players and the best-scoring
model produced by the Rosetta rebuild and refine protocol, given the same starting model(s). Solutions considerably better with one method than the other are indicated in bold. The solved
structures (which were released after each puzzle ended) are represented by their Protein Data Bank (PDB) codes. Results from these Foldit puzzles can be accessed on the Foldit website by
replacing ID with the corresponding Foldit puzzle ID in http://fold.it/portal/node/ID. 2kky, 2kpt, 2kpm, 2kk1 and 2knr were taken from the CASD-NMR experiment10. 2kpowas provided by N. Koga
and R. Koga. 2ki0 and 3epu were found by searching for unreleased structures on the PDB website (http://www.rcsb.org/pdb/search/searchStatus.do). 3lur and 3nuf were provided by the Joint
Center for Structural Genomics (JCSG). The location of figures containing results for each puzzle are provided in the last column.
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I “Predicting protein structures with a multiplayer
online game.” Cooper et al., Nature, 2010. [11]

I Also: Chess, zooniverse (�), ESP game (�),
captchas (�).
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Milgram’s social search experiment (1960s)

http://www.stanleymilgram.com

I Target person =
Boston stockbroker.

I 296 senders from Boston and
Omaha.

I 20% of senders reached
target.

I chain length ' 6.5.

Popular terms:
I The Small World

Phenomenon;
I “Six Degrees of Separation.”
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Milgram’s social search experiment (1960s)

Lengths of successful chains:

1 2 3 4 5 6 7 8 9 10 11 12
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L

n(
L

)

From Travers and
Milgram (1969) in
Sociometry: [29]

“An Experimental
Study of the Small
World Problem.”
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The Small World Problem:

Two features characterize a social ‘Small World’:
1. Short paths exist.
2. People are good at finding them.
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Social Search—the Columbia experiment
Milgram’s small world experiment with email:

I “An Experimental study of Search in Global Social
Networks”
P. S. Dodds, R. Muhamad, and D. J. Watts,
Science, Vol. 301, pp. 827–829, 2003. [12]
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Social search—the Columbia experiment

Experiment details:
I Word of mouth + accidental global media coverage:

60,000+ participants in 166 countries.
I 18 targets in 13 countries including:

I a professor at an Ivy League university,
I an archival inspector in Estonia,
I a technology consultant in India,
I a policeman in Australia,
I and a veterinarian in the Norwegian army.

I 24,000+ search chains.
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Social search—the Columbia experiment

Participation rates:
I Milgram’s experiment: ≈ 75% participation rate.
I Email version (different era): ≈ 37% participation

rate.
I Probability of a chain of length 10 getting through:

.3710 ' 5× 10−5

I Columbia experiment: Only 384 completed chains
(1.6% of all chains).

Upshot:
I Motivation/Incentives/Perception matter.
I Distant influence in networks is hard.
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Social search—Algorithmic choices matter:

Successful chains disproportionately used:
I weak ties (Granovetter)
I professional ties (34% vs. 13%)
I ties originating at work/college
I target’s work (65% vs. 40%)

. . . and disproportionately avoided
I hubs (8% vs. 1%) (+ no evidence of funnels)
I family/friendship ties (60% vs. 83%)

Geography → Work
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Demographics are of minimal importance:

Senders of successful messages showed little
absolute dependency on

I age,
I gender,
I country of residence,
I income,
I religion,
I relationship to recipient.

Range of completion rates for subpopulations:
I 30% to 40%
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Social search—the Columbia experiment

Basic results:
I 〈L〉 = 4.05 for all completed chains
I L∗ = Estimated ‘true’ median chain length (zero

attrition)
I Intra-country chains: L∗ = 5
I Inter-country chains: L∗ = 7
I All chains: L∗ = 7
I Milgram: L∗ ' 9
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Usefulness:

Harnessing social search:
I Can distributed social search be used for something

big/good?
I What about something evil? (Good idea to check.)
I What about socio-inspired algorithms for information

search?
I For real social search, we have an incentives

problem.
I Which kind of influence mechanisms/algorithms

would help propagate search?
I Fun, money, prestige, ... ?
I Must be ‘non-gameable.’
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Red balloons:

A Grand Challenge:
I 1969: The Internet is born (�)

(the ARPANET (�)—four nodes!).
I Originally funded by DARPA who created a grand

Network Challenge (�) for the 40th anniversary.
I Saturday December 5, 2009: DARPA puts 10 red

weather balloons up during the day.
I Each 8 foot diameter balloon is anchored to the

ground somewhere in the United States.
I Challenge: Find the latitude and longitude of each

balloon.
I Prize: $40,000.

∗DARPA = Defense Advanced Research Projects Agency (�).
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Where the balloons were:
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Finding red balloons:

The winning team and strategy:
I MIT’s Media Lab (�) won in less than 9 hours. [21]

I Pickard et al. “Time-Critical Social Mobilization,” [21]

Science Magazine, 2011.
I People were virally recruited online to help out.
I Idea: Want people to both (1) find the balloons and

(2) involve more people.
I Recursive incentive structure with exponentially

decaying payout:
I $2000 for correctly reporting the coordinates of a

balloon.
I $1000 for recruiting a person who finds a balloon.
I $500 for recruiting a person who recruits the balloon

finder, etc.
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Finding balloons:

Clever scheme:
I Max payout = $4000 per balloon.
I Individuals have clear incentives to both

1. involve/source more people (spread), and
2. find balloons (goal action).

I Gameable?
I Limit to how much money a set of bad actors can

extract.

Extra notes:
I MIT’s brand helped greatly.
I MIT group first heard about the competition a few

days before. Ouch.
I A number of other teams did well (�).
I Worthwhile looking at these competing strategies.
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The social world appears to be small... why?

Theory: how do we understand the small world
property?

I Connected random networks have short average
path lengths:

〈dAB〉 ∼ log(N)

N = population size,
dAB = distance between nodes A and B.

I But: social networks aren’t random...
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Simple socialness in a network:

Need “clustering” (your
friends are likely to
know each other):

Complex
Sociotechnical
Systems

Big Data,
Measurement, and
Complexity

The Theory of
Anything

Play and Crunch

Distributed Social
Search

Scale-Free
Networks

References

62 of 98

Non-randomness gives clustering:

A

B

dAB = 10 → too many long paths.
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Randomness + regularity

B

A

Now have dAB = 3 〈d〉 decreases overall

Complex
Sociotechnical
Systems

Big Data,
Measurement, and
Complexity

The Theory of
Anything

Play and Crunch

Distributed Social
Search

Scale-Free
Networks

References

64 of 98

Small-world networks

Introduced by Watts and Strogatz (Nature, 1998) [31]

“Collective dynamics of ‘small-world’ networks.”

Small-world networks were found everywhere:
I neural network of C. elegans,
I semantic networks of languages,
I actor collaboration graph,
I food webs,
I social networks of comic book characters,...

Very weak requirements:
I local regularity

+ random short cuts

Complex
Sociotechnical
Systems

Big Data,
Measurement, and
Complexity

The Theory of
Anything

Play and Crunch

Distributed Social
Search

Scale-Free
Networks

References

65 of 98

Previous work—finding short paths

But are these short cuts findable?

Nope...

Nodes cannot find each other quickly
with any local search method.

Need a more sophisticated model...
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Previous work—finding short paths

I What can a local search method reasonably use?
I How to find things without a map?
I Need some measure of distance between friends

and the target.

Some possible knowledge:
I Target’s identity
I Friends’ popularity
I Friends’ identities
I Where message has been
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Previous work—finding short paths

Jon Kleinberg (Nature, 2000) [17]

“Navigation in a small world.”

Allowed to vary:
1. Local search algorithm
2. Network structure.

Theoretical optimal search:
I “Greedy” algorithm.
I Number of connections grow logarithmically (slowly)

in space: α = d .
I Social golf.
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Previous work—finding short paths

I If networks have hubs can also search well: Adamic
et al. (2001) [1]

P(ki) ∝ k−γ
i

where k = degree of node i (number of friends).
I Basic idea: get to hubs first

(airline networks).
I But: hubs in social networks are limited.
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The problem

If there are no hubs and no underlying lattice, how can
search be efficient?

b

a

Which friend of a is closest
to the target b?

What does ‘closest’ mean?

What is ‘social distance’?
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Models

One approach: incorporate identity.

Identity is formed from attributes such as:
I Geographic location
I Type of employment
I Religious beliefs
I Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.
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Social distance—Bipartite affiliation networks

c d ea b

2 3 41

a

b

c

d

e

contexts

individuals

unipartite
network

Bipartite affiliation networks: boards and directors,
movies and actors.
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Social distance—Context distance

eca

high school
teacher

occupation

health careeducation

nurse doctorteacher
kindergarten

db
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Models

Generalized affiliation networks

100

eca b d

geography occupation age

0

I Blau & Schwartz [4], Simmel [25], Breiger [5], Watts et
al. [30]
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The model-results

Milgram’s Nebraska-Boston data:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

L

n(
L

)

Model parameters:
I N = 108,
I z = 300, g = 100,
I b = 10,
I α = 1, H = 2;

I 〈Lmodel〉 ' 6.7
I Ldata ' 6.5
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Nutshell for Small-World Networks:
I Bare networks are typically unsearchable.
I Paths are findable if nodes understand how network

is formed.
I Importance of identity (interaction contexts).
I Improved social network models.
I Improved peer-to-peer networks.
I Construction of searchable information databases

through tagging (experts versus hoi polloi).
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Size distributions
The sizes of many systems’ elements appear to obey an
inverse power-law size distribution:

P(size = x) ∼ c x−γ

where xmin < x < xmax and γ > 1.

I x can be continuous or discrete.
I Typically, 2 < γ < 3.
I No dominant internal scale between xmin and xmax.
I If γ < 3, variance and higher moments are ‘infinite’
I If γ < 2, mean and higher moments are ‘infinite’
I Negative linear relationship in log-log space:

log10 P(x) = log c−γ log10 x
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Examples:
I Earthquake magnitude (Gutenberg Richter law):

P(M) ∝ M−3

I Number of war deaths: P(d) ∝ d−1.8 [24]

I Sizes of forest fires
I Sizes of cities: P(n) ∝ n−2.1

I Number of links to and from websites
I Number of citations to papers: P(k) ∝ k−3.
I Individual wealth (maybe): P(W ) ∝ W−2.
I Distributions of tree trunk diameters: P(d) ∝ d−2.
I Diameter of moon craters: P(d) ∝ d−3.
I Word frequency: e.g., P(k) ∝ k−2.2 (variable)

Note: Exponents range in error;
see M.E.J. Newman arxiv.org/cond-mat/0412004v3 (�)
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Work of Yore

I 1924: G. Udny Yule [32]:
# Species per Genus

I 1926: Lotka [18]:
# Scientific papers per author (Lotka’s law)

I 1953: Mandelbrot [19]:
Optimality argument for Zipf’s law for word
frequency; focus on language.

I 1955: Herbert Simon [26, 33]:
Zipf’s law, city size, income, publications, and
species per genus.

I 1965/1976: Derek de Solla Price [22, 23]:
Network of Scientific Citations.

I 1999: Barabasi and Albert [3]:
The World Wide Web, networks-at-large.
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Not everyone is happy...

Mandelbrot vs. Simon:

I Mandelbrot (1953): “An Informational
Theory of the Statistical Structure of
Languages” [19]

I Simon (1955): “On a class of skew
distribution functions” [26]

I Mandelbrot (1959): “A note on a class
of skew distribution function: analysis
and critique of a paper by H. A. Simon”

I Simon (1960): “Some further notes on
a class of skew distribution functions”
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Not everyone is happy... (cont.)

Mandelbrot vs. Simon:

I Mandelbrot (1961): “Final note on a
class of skew distribution functions:
analysis and critique of a model due to
H.A. Simon”

I Simon (1961): “Reply to ‘final note’ by
Benoit Mandelbrot”

I Mandelbrot (1961): “Post scriptum to
‘final note”’

I Simon (1961): “Reply to Dr.
Mandelbrot’s post scriptum”
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Not everyone is happy... (cont.)

Mandelbrot vs. Simon:

I “We shall restate in detail our 1959
objections to Simon’s 1955 model for
the Pareto-Yule-Zipf distribution. Our
objections are valid quite irrespectively
of the sign of p-1, so that most of
Simon’s (1960) reply was irrelevant.”

I “Dr. Mandelbrot has proposed a new
set of objections to my 1955 models of
the Yule distribution. Like his earlier
objections, these are invalid.”
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Essential Extract of a Growth Model

Random Competitive Replication (RCR):
1. Start with 1 element of a particular flavor at t = 1
2. At time t = 2, 3, 4, . . ., add a new element in one of

two ways:
I With probability ρ, create a new element with a new

flavor
• Mutation/Innovation

I With probability 1− ρ, randomly choose from all
existing elements, and make a copy.
• Replication/Imitation

I Elements of the same flavor form a group
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Random Competitive Replication

Observations:
I Competition for replication between elements is

random
I Competition for growth between groups is not

random
I Selection on groups is biased by size
I Rich-gets-richer story
I Random selection is easy
I No great knowledge of system needed
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Random Competitive Replication

I After some thrashing around, one finds:

Pk ∝ k−γ

where

γ = 1 +
1

(1− ρ)

I See γ is governed by rate of new flavor creation, ρ.
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Evolution of catch phrases

I Yule’s paper (1924) [32]:
“A mathematical theory of evolution, based on the
conclusions of Dr J. C. Willis, F.R.S.”

I Simon’s paper (1955) [26]:
“On a class of skew distribution functions” (snore)

From Simon’s introduction:
It is the purpose of this paper to analyse a class of
distribution functions that appear in a wide range of
empirical data—particularly data describing sociological,
biological and economoic phenomena.
Its appearance is so frequent, and the phenomena so
diverse, that one is led to conjecture that if these
phenomena have any property in common it can only be
a similarity in the structure of the underlying probability
mechanisms.
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Evolution of catch phrases

I de Solla Price (1965): [22] Cumulative Advantage
(better)
“Networks of scientific papers”

I Robert K. Merton: (�) the Matthew Effect (�)
I Studied careers of scientists and found credit flowed

disproportionately to the already famous

From the Gospel of Matthew:
“For to every one that hath shall be given...
(Wait! There’s more....)
but from him that hath not, that also which he
seemeth to have shall be taken away.
And cast the worthless servant into the outer
darkness; there men will weep and gnash their teeth.”
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Evolution of catch phrases

Merton was a catchphrase machine:
1. Self-fulfilling prophecy
2. Role model
3. Unintended (or unanticipated)

consequences
4. Focused interview → focus group

Bonus achievement:

Robert C. Merton won the Nobel Prize
for Economics in 1997.
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Evolution of catch phrases—Scale-free networks:
I Barabási and Albert [3]—thinking about the Web
I Independent reinvention of a version of Simon and

Price’s theory for networks
I Another term: “Preferential Attachment”
I Basic idea: a new node arrives every discrete time

step and connects to an existing node i with
probability ∝ ki .

I Connection:
Groups of a single flavor ∼ edges of a node

I Small hitch: selection mechanism is now
non-random

I Solution: Connect to a random node (easy)
I + Randomly connect to the node’s friends (also easy)
I Scale-free networks = food on the table for physicists
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