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Abstract

Networks are intrinsic to a broad spectrum of complex phenomena in the
world around us: thoughts and memory emerge from the interconnection
of neurons in the brain, nutrients and waste are transported through the
cardiovascular system, and social and business networks link people. River
networks stand as an archetypal example of branching networks, an impor-
tant sub-class of all network structures. Of significant physical interest in
and of themselves, river networks thus also provide an opportunity to de-
velop results which are extendable to branching networks in general. To this
end, this thesis carries out a thorough examination of river network geom-
etry. The work combines analytic results, numerical simulations of simple
models and measurements of real river networks. We focus on scaling laws
which are central to the description of river networks. Starting from a few
simple assumptions about network architecture, we derive all known scaling
laws showing that only two scaling exponents are independent. Having thus
simplified the description of networks we pursue the precise measurement
of real network structure and the further refining of our descriptive tools.
We address the key issue of universality, the possibility that scaling expo-
nents of river networks take on specific values independent of region. We find
that deviations from scaling are significant enough to preclude exact, defini-
tive measurements. Importantly, geology matters as the externality of basin
shape is shown to be part of the reason for these deviations. This implies that
theories that do not incorporate boundary conditions are unable to produce
realistic river network structures. We also extend a number of scaling laws
to incorporate fluctuations about simple scaling. Going further than this, we
find we are able to identify joint probability distributions that underlie these
scaling laws. We generalize a well-known description of the size and number
of network components as well as a description of network architecture, how
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these network components fit together. Both of these generalizations demon-
strate that the spatial distribution of network components is random and, in
this sense, we obtain the most basic level of network description.

Thesis Supervisor: Daniel H. Rothman
Title: Professor of Geophysics
Department of Earth, Atmospheric and Planetary Sciences
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CHAPTER 1

Introduction

This is a thesis about the geometry of river networks.

Let us first take a moment to enjoy the etymological foundations of the
title. River networks pattern the earth’s surface, their form constantly be-
ing reaffirmed and rearranged by the many physical actions that conspire
together to create erosion. The study of river networks is thus a subject
placed in the box marked “Earth Sciences,” bundled up in a small pack-
age with the word “Geomorphology” written across one end. In its entirety,
geomorphology is the study of the surfaces of planets, their form and the
physical processes at work [114]. Thus, in discerning the spatial structure of
river networks, we are performing geometry in its most obvious and obsolete
sense, the measurement of the earth.

While the work of this thesis does technically reside somewhere in the geo-
morphology package, the study of river networks lends itself to more general
applications. First and foremost, a river network stands as an archetypal
example of a branching network. Branching networks appear throughout
the world around us and often their tasks revolve around the distribution
or collection of material. Myriad examples appear in biology such as the
bronchial structure of the lungs [44, 53], the arterial and venous blood net-
works [23, 43, 71], and the external forms of all tree-like biological organisms.

Moving out beyond branching networks, we see them as an important
sub-class of the broad spectrum of all networks. Having restrained ourselves
from saying the same for branching networks, we give in to the temptation
and suggest that networks are ubiquitous. Moreover, they play many im-
portant roles. There is the Internet [3], power grids [148], road systems, leaf
patterns [103], computer chip architecture, social networks [149], and the
wiring of the brain [5, 17].
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14 CHAPTER 1: Introduction

It seems reasonable that networks become a focus of the much vaunted
study of complex systems (in other words, science). Indeed, the study of
networks is showing signs of developing into a science of its own. Although
graph theory is a mature field, results there lean towards topological infor-
mation. There appears to be much room for general theories of network
structure, network evolution and dynamics on networks.

1.1 A few rules of the game

Against the sage advice of Heraclitus,1 we largely view river networks as
static structures. While their dynamic origin is of great interest, as it is for
branching networks in general, we find a profound richness in the description
of river network geometry. Indeed, it is only after a static description of
network form has been properly developed that we may begin to reasonably
ask about network growth. Furthermore, in the case of river networks, we
have access only to the present day’s single snapshot of the earth’s topo-
graphic evolution. Dynamic models are thus guided by physical reasoning
and inspired computer modeling. While this is enjoyable, comparisons be-
tween models and real data tend to be ambiguous and will remain so until
we have a better picture of real data.

A particular feature that sets river networks apart within the class of
branching networks is that they are embedded in a two-dimensional surface.
Going one step further, the work presented here focuses on the planform
structure of river networks, i.e., the network as viewed from directly above
as on a map. There is a simple reason for doing this: precipitation falls
downwards. If we want to equate the area of a basin with how much water
is flowing out of it, then the area we need is not the integral of dS over
the basin’s surface. Rather, it is the area of the basin as projected onto the
horizontal plane. In truth, the connection between precipitation and river
water levels is more complicated but nevertheless we have good motivation
to study the planform structure of river networks. These remarks are made
all the more academic by our choice to study large-scale river networks such
as the Amazon and the Mississippi. These networks lie on what are effec-
tively gravitationally flat surfaces and our planar treatment of river networks
becomes the logical approach.

1You could not step twice into the same rivers; for waters are ever flowing on to you—
Heraclitus c. 540–c. 480 B.C. [12].
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1.2 A nutshelling of major results

Two central notions in the study of river networks are scaling and univer-
sality. In brief, the presence of scaling in a system means that at different
scales, a representation of the system looks the same when an appropriate
transformation is made. This general definition often reduces to the state-
ment of a set of power laws relating a system’s variables. This in turn gives
a set of scaling exponents. Universality arises when disparate systems are
described by the same set of scaling exponents which are said to define a
universality class. Importantly, such an equivalence is usually reflected in a
congruence between high-level descriptions of the processes creating systems
while the low-level or microscopic details appear to bear little resemblance
to each other.

Now, it is observed that the basic structure of river networks is described
by scaling laws. So the question is this: what is the universality class of river
networks?

Our findings indicate the answer is there is no such beast. We observe
deviations from scaling that range from subtle to strong and no fixed ex-
ponent can be justified. Moreover, an important source of these deviations
comes from the boundary condition of basin shape which is always imposed
at large scales by geology. The effects and history of geology are not simply
removed by the process of averaging.

Along the road to this finding, we achieve a variety of other results,
three of which are bold enough to step forward here. First, from a few
simple assumptions about network architecture, we derive the gamut of river
network scaling laws. This greatly simplifies and clarifies the amount of
information needed to fully describe network structure.

Next, we generalize the description of network components. We find
distributions, where before only mean quantities have been used, for the size
and number of different types of network fragments. Moreover, we show in
depth how these distributions are connected to each other.

Finally, we fully generalize the accepted view of river network architec-
ture. We show in particular that streams and their tributaries are randomly
distributed in space. We thus identify the lowest level of meaningful network
description.

Having briefly canvassed the major results, we provide a more detailed
and linear tour through the thesis.
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1.3 Detailed outline of the thesis

First off, we fully describe scaling and universality later in the Introduction.
We round this discussion out with a presentation of a number of theoretical
networks. Each network is a representative of a specific universality class,
i.e., a set of networks whose geometries are described by identical scaling
exponents. This discussion is adapted from our review paper “Scaling, Uni-
versality and Geomorphology” [35].

The thesis proper then comprises four main chapters. Each of these is
presented as a separate paper and may be read independent of the others
and, indeed, this introduction. However, they are strongly interrelated and
are arranged in an order most natural for reading. There is therefore also a
degree of overlap in the introductory material to each chapter which, after
having read some of the others, may prove tiresome and judicious skimming
is advised.

In chapter 2 we develop connections between the large number of scal-
ing laws found in the description of river networks. This provides a base of
understanding upon which the following chapters build. In connecting these
scaling laws we obtain a set of scaling relations, i.e., simple algebraic ex-
pressions involving scaling exponents. Some of these scaling relations agree
with those already known, others are new, and yet others provide corrections
to previous calculations. Our approach is the first to connect all exponents
starting from a few simple assumptions.

We are thereby able to reduce the scaling law description of river networks
to the content of two independent scaling exponents. One of these exponents
is further seen to depend on two parameters that describe the details of
network architecture. As far as description by scaling laws goes, universality
classes of river networks may therefore be identified by a pair of exponents.

The chapter is for the most part theoretical with some modest compar-
isons with data from real networks and models. This imbalance is addressed
in the ensuing three chapters (which have been created as a three part series
of papers) with each presenting an even mixture of theory and empirical ob-
servations. Specifically, we examine networks for the Mississippi, Amazon,
Nile, Congo and Kansas rivers basins. We also motivate our theory with a
model of random networks originally introduced by Scheidegger [112]. This
model also appears with less fanfare in chapter 2 and is described later on
in the introduction.

In chapter 3 we focus on the scaling law relating drainage basin area and
main stream length. Known as Hack’s law, we understand it be of central
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importance due to the work we have done in chapter 2. There are several
goals of this chapter. First, we examine fluctuations around Hack’s law. We
go further than fluctuations and are in fact able to postulate a full joint
probability distribution between basin areas and main stream lengths.

Having established this broader view of Hack’s law, we carry out a detailed
investigation of the actual form of Hack’s law found in real networks. The aim
is to measure the scaling exponent of Hack’s law as accurately as possible.
What we find, however, is that scaling is only approximately obeyed.

We find Hack’s law has three regimes pertaining to small, intermediate
and large scales. At small scales, the presence of linear basin shapes gives rise
to a linear relationship between areas and lengths. This linearity gives way to
an approximate scaling at intermediate scales. Here, we find slow, systematic
drifts in exponents. This is significant: we are unable to associate a unique
exponent with the intermediate regime. A further surprise is the extent to
which deviations at small and large scales limit this region of approximate
scaling.

At large scales, Hack’s law breaks down, in part due to growing fluctu-
ations coupled with exponentially decreasing sample space. However, this
breakdown is not random and we find deviations to be strongly correlated
with overall basin shape. It is this last observation that brings geology back
into the picture. Basin shapes at large scales are set by tectonic processes
such as orogenesis, i.e., the formation of mountains, and at smaller scales by
geologic processes such as faulting. Even where such effects are not strong,
statistical fluctuations in basin shape still occur.

Taken in total, these deviations from scaling, subtle as they are at in-
termediate scales, are enough to prevent us from determining exact scaling
exponents. River network structure is thus suggested to be subtly more com-
plicated then the form suggested by a single universality class. The results
attest to the difficulty of comparing theory, models and real networks.

Nevertheless, the approximate scaling we do observe is good enough to aid
the development of our geometric picture of river networks. In chapter 4
we uncover distributions for the size and number of network components.
Networks are inherently discrete and can be seen as compositions of stream
segments. Equivalently, they can be broken down into a discrete set of nested
sub-basins. These network components may then be systematically classified
according to the way they fit together. The relationships between the average
features of network components belonging to different classes is known as
Horton’s laws [58]. What we provide here is a full generalization of these
relationships, extending their arguments from averages to distributions.
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The underlying assumptions of chapter 2 concern network architecture,
i.e., how network components fit together, and a generalization of these ideas
appears in chapter 5. This network description is originally due to Toku-
naga [144, 145, 146]. Here we develop a fundamental picture of river net-
work structure showing that the distribution of stream segments is random.
Hence, in this final chapter, we reach the most basic level of description of
river network geometry.

A summary with a few thoughts on future directions and the nature of
research is provided in the Conclusion. The summary, having the thesis
behind it, is more specific in its statements (and has more jargon) and those
well versed in river networks may find it useful to read ahead of time.

Appendix A, we provide detailed calculations pertaining to the work
of Chapter 4. In Appendix B, inspired by Hack’s law and the Schei-
degger model, we perform some calculations involving random walks. We
examine the joint distribution between area and time to first return. In Ap-
pendix C, we provide details of our analysis of digitized topography and in
Appendix D we provide some extra data from our analysis not included in
the main body of the thesis. Finally, a full bibliography is naturally provided
along with indices for the citations as well as notation and subject matter.

We now turn to our discussion of scaling and universality. This is followed
by a brief overview of known universality classes of river networks. The reader
is invited to engage in these preliminaries as he or she deems necessary.

1.4 Scaling

Consider the following questions regarding the structure of river networks. If
one doubles the length of a stream, how does the area drained by that stream
change? Or, inversely, how does basin shape change when we compare basins
of different drainage areas? The concept of scaling addresses such questions.

1.4.1 Basin allometry

Figure 1.1 shows two river basins along with a sub-basin of each. A basin
can be defined at any point on a landscape. Embedded within any basin are
a multitude of sub-basins. In considering our simple question above we must
first define some dimensions. A reasonable way to do this is to enclose each
basin by a rectangle with dimensions L‖ and L⊥ as illustrated in Figure 1.1a.
L‖ is the longitudinal extent of the basin and L⊥ is the basin’s characteristic
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Figure 1.1: A pair of river basins, each with a sub-basin scaled up for comparison
with the original. The basins in (a) are self-similar. The basins in (b) are not.

width. By this construction, the area a of a basin is related to these lengths
by

a ∝ L‖L⊥. (1.1)

Measurements made from real river basins show that L⊥ scales like a power
H of L‖ [63, 87]. In symbols,

L⊥ ∝ LH
‖ . (1.2)

Substituting equation (1.2) into (1.1), we obtain

a ∝ L1+H
‖ . (1.3)

Equations (1.2) and (1.3) are scaling laws. Respectively, they describe how
one length scales with respect to another, and how the total area scales with
respect to one of the lengths.

Figure 1.1a corresponds to H = 1, known as geometric similarity or self-
similarity. As the latter appellation implies, regardless of the basin’s size, it
looks the same. More prosaically, lengths scale like widths.

The case H 6= 1 is called allometric scaling. Originally introduced in
biology by Huxley and Teissier [62] “to denote growth of a part at a different
rate from that of a body as a whole,” its meaning for basin size is illustrated



20 CHAPTER 1: Introduction

by Figure 1.1b. Here 0 ≤ H < 1, which means that if we examine basins of
increasing area, basin shape becomes more elongate. In other words, because
and (1 − H)/(1 + H) > 0 and

L⊥/L‖ ∝ L
−(1−H)
‖ ∝ a−(1−H)/(1+H), (1.4)

the aspect ratio L⊥/L‖ decreases as basin size increases.

1.4.2 Random walks

Our next example is a random walk [39, 91]. We describe it straightforwardly
here noting that random walks and their geomorphological applications will
reappear throughout the review.

The basic random walk may be defined in terms of a person, who has
had too much to drink, stumbling home along a sidewalk. The disoriented
walker moves a unit distance along the sidewalk in a fixed time step. After
each time step, our inebriated friend spontaneously and with an even chance
turns about face or maintains the same course and then wanders another
unit distance only to repeat the same erratic decision process. The walker’s
position xn after the nth step, relative to the front door of his or her local
establishment, is given by

xn = xn−1 + sn−1 =

n−1
∑

k=0

sk (1.5)

where each sk = ±1 with equal probability and x0 = 0.
There are many scaling laws associated with random walks. Probably the

most important of these describes the root-mean-square distance that the
average walker has traveled after n steps. Since xn is the sum of independent
increments, its variance 〈x2

n〉 is given by the sum of the individual variances,

〈

x2
n

〉

=
n
∑

i=1

〈

s2
i − 〈si〉2

〉

, (1.6)

where 〈·〉 indicates an average over an ensemble of walkers. Since 〈si〉 = 0

and s2
i = 1, we have 〈x2

n〉 = n. Defining rn = 〈x2
n〉

1/2
, we obtain

rn = n1/2. (1.7)
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Figure 1.2: Two example random walks where the lower walk is the inset section of
the upper walk “blown up.” Random walks are statistically equivalent under the
rescaling of equation (1.8). Here, b = 1/5 so the rescaling is obtained by stretching
the horizontal axis by a factor of 5 and the vertical one by 51/2.

Generalizing the scaling (1.7) to continuous time t and space x, one has
r(t) ∝ t1/2. Now note that

r(t) = b−1/2r(bt). (1.8)

In other words, if one rescales time and space such that t → bt and x → b1/2x,
the statistics of the random walk are unchanged. Figure 1.2 illustrates the
meaning of these rescalings. The two random walks shown, the lower being
a portion of the upper rescaled, are said to be statistically equivalent.

More generally, functions f(x) that satisfy equations of the form f(x) =
b−αf(bx) are called self-affine [83]. This relation need not be exact and
indeed usually only holds in a statistical sense. An example already given is
the scaling of basin widths found in equation (1.2). Also, when f measures
the elevation of a surface at position x, α is called the roughness exponent
[10].

1.4.3 Probability distributions

What is the size distribution of river basins? In other words, if you pick a
random position on a landscape, what is the probability that an area a drains
into that point? As we shall see, scaling laws appear once again, this time
in the form of probability distributions.
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Imagine that the boundaries on each side of a basin are directed random
walks. In this context, a directed random walk is one in which the random
motion is always in the x-direction of Figure 1.1 while the y-direction plays
the role of time. Taking the left boundary to be φl(y) and the right boundary
to be φr(y), a basin is formed when these two walks intersect (i.e., a pair
of sots collide). Since φl and φr are independent, the difference φ(y) =
φr(y)− φl(y) is yet another random walk. We see then that the distribution
of basin sizes may be related to the probability that the random walk φ(y)
returns to its initial position after n steps for the first time. This is the classic
problem of the first return time of a random walk. As the number of steps
becomes large, the asymptotic form of the solution is [39]

P (n) =
1

2
√

π
n−3/2. (1.9)

In terms of basin parameters, we may take n ∝ l ∝ L‖, where l is the
length of the main stream. Note that the assumption l ∝ L‖ is only valid for
directed random walks; this will be discussed further in the following section
on networks. We therefore have the distribution of main stream lengths

Pl(l) ∝ l−3/2. (1.10)

Since the typical width of such a basin of length l scales like l1/2 (see equa-
tion (1.7)), the typical area a ∝ l3/2. Thus the probability of basin areas
is

Pa(a) = Pl[l(a)]
dl

da
∝ a−4/3. (1.11)

As expressed by equation (1.2), basin widths scale in general like LH
‖ ,

where 0 ≤ H < 1 rather than the fixed H = 1/2 of random walks. In
keeping with this observation, the distributions for area and main stream
also generalize. Thus we write

Pl(l) ∝ l−γ and Pa(a) ∝ a−τ . (1.12)

Furthermore, the exponents τ and γ are not independent and their connection
lies in the aforementioned Hack’s law, one of the most well-known scaling laws
of river networks. Hack’s law expresses the variation of average main stream
length l̄ with area a,

l̄ ∝ ah (1.13)
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where h is known as Hack’s exponent. The averaged value l̄ is required here
since there are noticeable statistical fluctuations in Hack’s law [32, 33, 34, 87,
106]. For the simple random model we have l̄ ∝ a2/3, and therefore Hack’s
exponent h = 2/3 [61, 138]. Now, as per equation (1.11), we can write

Pa(a) = Pl[l̄(a)]
dl̄

da
(1.14)

∝ ah(1−γ)−1. (1.15)

Using equation (1.12), this gives our first scaling relation

τ = h(1 − γ) − 1. (1.16)

In general, scaling relations express exponents as algebraic combinations of
other exponents. Such relations abound in theories involving scaling laws
and as such provide important tests for both theory and experiment.

1.4.4 Scaling functions

In any physical system, scaling is restricted to a certain range. For example,
basins on the size of a water molecule are clearly out of sanity’s bounds. At
the other extreme, drainage areas are capped by the size of the overall basin
which is dictated by geology. In the customary terminology, one says that
scaling breaks down at such upper cut-offs due to finite-size effects.

As it turns out, this feature of scaling is important both in theory and in
practice. Measurements of exponents are made more rigorous and more can
be achieved with limited system size. In the case of river networks, Maritan
et al. [87] demonstrate how finite-size scaling can be used to derive a number
of scaling relations. We outline the basic principle below.

Consider the probability distribution of basin areas Pa(a) ∝ a−τ . We can
more generally write it as

Pa(a) = a−τf(a/a∗) (1.17)

where f is referred to as a scaling function and a∗ is the typical largest basin
area. The behavior of the present scaling function is

f(x) ∝
{

c for x � 1
0 for x � 1.

(1.18)

So for a � a∗ we have the power law scaling of Pa(a) while for a � a∗, the
probability vanishes.
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We enjoy the full worth of this construction when we are able to examine
systems of varying overall size. We can recast the form of Pa(a) with lengths
by noting from equation (1.3) that a∗ ∝ LD

‖ where we have set 1 + H = D.
This gives

Pa(a|L‖) = L−Dτ
‖ f̃(a/LD

‖ ) (1.19)

where f̃ is a new scaling function which, due to equation (1.12), has the
limiting forms

f̃(x) ∝
{

x−τ for x � 1
0 for x � 1.

(1.20)

We now have two exponents involved. By examining basins of different overall
size L we obtain a family of distributions upon which we perform a scaling
collapse. Rewriting equation (1.19) we have

LτD
‖ Pa(a|L‖) = f̃(a/LD

‖ ) (1.21)

so that plots of LDτ
‖ Pa against a/LD

‖ should lie along one curve, namely the

graph of the scaling function f̃ . Thus, by tuning the two exponents τ and D
to obtain the best data collapse we are able to arrive at strong estimates for
both.

1.5 Universality

One would like to know precisely what aspects of a system are responsible
for observed scaling laws. Sometimes seemingly different mechanisms lead to
the same behavior. If there is truly a connection between these mechanisms
then it must be at a level abstract from raw details. In scaling theory, such
connections exist and are heralded by the title of universality. In the present
section, we consider several examples of universality. This will then lead us
into problems in geomorphology proper.

1.5.1 More random walks: crossover phenomena

First, consider once again the drunkard’s walk. Suppose that instead of
describing the walk as one of discrete steps of unit length, the walker instead
lurches a distance sn at time n with sn now drawn from some probability
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distribution P (s). Take, for example, P (s) ∝ exp{−s2/2σ2}, a Gaussian
with variance σ2. One then finds from equation (1.6) that 〈x2

n〉 = nσ2,
and once again the characteristic excursion rn ∝ n1/2. Thus the scaling is
the same in both cases, even though the details of the motion differ. Loosely
stated, any choice of P (s) will yield the same result, as long as the probability
of an extremely large step is extremely small. This is an especially simple
but nonetheless powerful instance of universality, which in this case derives
directly from the central limit theorem.

Real random walks may of course be more complicated. The archetypal
case is Brownian motion. Here one considers the random path taken by a
microscopically small object, say a tiny sphere of radius r and mass m, im-
mersed in a liquid of viscosity µ. Within the fluid, random molecular motions
induced by thermal agitations act to give the particle random kicks, thus cre-
ating a random walk. A classical model of the process, due to Langevin, is
expressed by the stochastic differential equation [45, 105]

m
dv

dt
= −αv + η(t). (1.22)

Here v is the velocity of the particle, η(t) is uncorrelated Gaussian noise, and
α = 6πrµ is the hydrodynamic drag that resists the motion of the sphere.
Now note that the existence of the drag force creates a characteristic time
scale τ = α/m. For times t � τ , we expect viscous damping to be sufficiently
unimportant that the particle moves in free flight with the thermal velocity
characteristic of molecular motion. On the other hand, for times t � τ , the
effect of any single kick should damp out.2 Solving equation (1.22) for the
mean-square excursion 〈x2〉, one finds [45, 105]

〈

x2
〉

∝
{

t2 t � τ
t t � τ,

(1.23)

The first of these relations describes the ballistic phase of Brownian motion
while the second describes the diffusive phase. The point here is that there
is a crossover from one type of behavior to another, each characterized by a
particular exponent. The existence of the ballistic phase at small times, like
the diffusive phase at large times, is independent of the details of the mo-
tion. Brownian motion thus provides an elementary example of a dynamical
process that can fall into one of two classes of motion, depending on which

2While the essence of the problem is captured here, the full story is in truth richer [e.g.,
4].
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processes dominate at which times. In general, such crossover transitions
range from being sharp to being long and drawn out. Later, we will argue
that crossovers are an important feature of Hack’s law.

1.5.2 A little history

Scaling and universality are deep ideas with an illustrious past. Therefore a
brief historical perspective is in order.

In essence, scaling may be viewed as an extension of classical dimensional
analysis [11]. Our interest, however, is strongly influenced by studies of phase
transitions and critical phenomena that began in the 1960’s. Analogous to
the present situation with river networks, equilibrium critical phenomena
at that time presented a plethora of empirical scaling exponents for which
there was no fundamental “first principles” understanding. Kadanoff and
others then showed how an analysis of a simple model of phase transitions—
the famous Ising model of statistical mechanics—could yield the solution to
these problems [68]. Their innovation was to view the problem at different
length scales and search for solutions that satisfied scale invariance.

These ideas were richly extended by Wilson’s development of the cal-
culational tool known as the renormalization group [155]. This provided a
formal way to eliminate short-wavelength components from problems while
at the same time finding a “fixed point” from which the appropriate scaling
laws could be derived. The renormalization group method then showed ex-
plicitly how different microscopic models could yield the same macroscopic
dynamics, i.e., fall within the same universality class.

These ideas turned out to have tremendous significance well beyond equi-
librium critical phenomena. (See, for example, the brief modern review by
Kadanoff [67] and the pedagogical book by Goldenfeld [49].) Of particular
relevance to geomorphology are the applications in dynamical systems theory.
An outstanding example is the famous period-doubling transition to chaos,
which occurs in systems ranging from the forced pendulum to Rayleigh-
Bénard convection [129]. By performing a mathematical analysis similar to
that of the renormalization group, Feigenbaum [38] was able to quantitatively
predict the way in which a system undergoes period-doubling bifurcations.
The theory applies not only to a host of models, but also to widely disparate
experimental systems.

Underlying all of this work is an effort to look for classes of problems
having common solutions. This is the essence of universality: if a problem
satisfies qualitative criteria, then its quantitative behavior—scaling laws and
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scaling relations—may be predicted.

1.6 Known universality classes of river net-

works

We next describe basic network models that exemplify various universality
classes of river networks. These classes will form the basis of our ensuing
discussion of Hack’s law. We consider networks for non-convergent flow,
random networks of directed and undirected nature, self-similar networks and
“optimal channel networks.” We also discuss binary trees to illustrate the
requirement that networks be connected with surfaces. We take universality
classes to be defined by the pair (h, d), these exponents being sufficient to
give the exponents of all macroscopic scaling laws. The networks classes
described below are provided in Table 1.1, along with results for real river
networks.

Note that in some cases, different models belong to the same universality
class. Indeed, this is the very spirit of universality. The details of the models
that we outline below are important only to the models themselves.

1.6.1 Non-convergent flow [(h, d) = (1, 1)]

Figure 1.3a shows the trivial case of non-convergent flow where (h, d) = (1, 1).
By non-convergent, we mean the flow is either parallel or divergent. Basins
are effectively linear objects and thus we have that drainage area is propor-
tional to length. This universality class corresponds to flow over convex hill-
slopes, structures that are typically dominated by diffusive processes rather
than erosive ones.

1.6.2 Directed random networks [(h, d) = (2/3, 1)]

We next have what we deem to be the simplest, physically reasonable net-
work entailing convergent flow. This is the directed random network first
introduced by Scheidegger [112]. Scheidegger originally considered the en-
semble of networks formed on a triangular lattice when flow from each site
is randomly chosen to be in one of two directions. This may be reformulated
on a regular square lattice with the choices as given in Figure 1.3b. Due to
universality, the same scaling arises independent of the underlying lattice.
Now, these networks are essentially the same as that which we discussed in
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Figure 1.3: Possible directions of flow for three networks whose statistics belong to
differing universality classes. Diagram (a) provides the trivial hillslope class where
overland flow is essentially non-convergent; diagram (b) corresponds to directed
random networks; and diagram (c) to undirected random networks. Note that
while diagram (a) literally pictures perfect parallel flow, it figuratively symbolizes
any set of flow lines that do not converge.

the introductory section on scaling. In both cases basin boundaries and main
streams are directed random walks. We have thus already derived the re-
sults h = 2/3, τ = 4/3 and γ = 3/2. Other exponents follow from the scaling
relations. Furthermore, d = 1 since the networks are directed. Our first uni-
versality class is therefore defined by the pair of exponents (h, d) = (2/3, 1).

At present, the Tokunaga and Horton parameters may only been obtained
from numerical simulations.

The dynamics here appear to be back-to-front. River networks extend
upwards into a surface as a fracture propagates into rock. Of course, the dy-
namics here are merely “dynamics” and only serve the purpose of describing
what is a essentially a static model. But we can think of the model as having
a growth of sorts by considering the divides. Starting from the bottom of our
artificial slope, we can picture the divides between basins as random walks
moving upwards. When two such divides meet then they continue on as one
single boundary. The network of divides formed is exactly the same as the
network of rivers but oriented in the opposite direction. Moreover, the two
networks mesh together—like the visual illusion of the corner cube, one can
see either but not both at the same time.

An alternative view of Scheidegger networks is to consider the surfaces
from which they may be derived. There is an infinitude of such since networks
are essentially only defined by the sign of differences in heights. One can,
for example, always define a surface with all heights in [0, 1] that will yield a
given network (directed or not). It is clear that much information is lost when
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Figure 1.4: The simplest, physically reasonable model of a river network. Flow is
down the page and from each site the direction of flow is randomly chosen to be
one of the two neighbors below.

a surface is replaced by its drainage network. In the case of Scheidegger, we
can make a surface slightly more aesthetically pleasing by adding an overall
tilt to a lattice of random heights chosen uniformly from [0, 1]. Providing
the tilt is sufficient to make the derivative network a directed one then the
output will be a Scheidegger one.

So a Scheidegger network being random and uncorrelated is derived from
a surface of the same nature with the sole identifiable characteristic being an
overall trend.

1.6.3 Undirected random networks [(h, d) = (5/8, 5/4)]

If we relax the condition of directedness, then we move to a set of networks
belonging to a different universality class. These networks were first explored
by Leopold and Langbein [82]. They were later theoretically studied under
the moniker of random spanning trees by Manna et al. [84] who found that
the universality class is described by (h, d) = (5/8, 5/4). The possible flow
directions are shown for both directed and undirected random networks in
Figures 1.3b and 1.3c.
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Figure 1.5: Two examples of a binary tree rendered onto a plane. The exponential
growth of the number of branches means that the networks fill up space too quickly.
The two usual assumptions of binary trees that individual links are similar in length
and that drainage density is uniform cannot be both maintained.

1.6.4 Branching trees [(h, d) = (?, ?)]

The networks above are built on two-dimensional lattices. We take an aside
here to discuss a case where no clear link to a two-dimensional substrate
exists. Consider then a binary branching tree and all of its possible sub-
networks [117, 118]. This seems a logical model since most river networks
are comprised of confluences of two streams at forks—very rarely does one
see even trifurcations let alone the conjoining of four streams.

However, binary trees are not as general as one might think. That river
networks are trees is evident but they are special trees in that they fill all
space (uniform drainage density again, see Figure 1.5). If links between forks
are assumed to be roughly constant throughout a network then drainage den-
sity increases exponentially. Conversely, if drainage density is held constant,
then links grow exponentially in length as one moves away from the outlet
into the network. Thus, one cannot consider the binary tree model to be a
representation of real river networks.3

3Binary trees are examples of Bethe lattices which have been well studied in perco-
lation theory [126]. Solutions to percolation problems show that they resemble infinite-
dimensional space, much less two-dimensional space.
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Figure 1.6: The Peano basin, a member of the (h, d) = (1/2, 1) universality class.
The first three basin show the basic construction with each larger basin being built
out of four of those from the previous level. The rightmost basin shows a slight
perturbation to remove the trifurcations. Each basin’s outlet is at its bottom.

Nevertheless, we briefly persist with this unrealizable model since it is of
historic importance and does allow for some interesting analysis. If we do
make the unphysical assumption that we may ascribe unit lengths and areas
to each link then the Horton ratios can be calculated to be Rn = 4 and Rl =
2 [117, 118, 145]. This gives the Hack exponent h = log Rl/ log Rn = 1/2.
Other avenues have arrived at this same result which came to be known as
Moon’s conjecture [92, 150]. Since main stream lengths are proportional to
basin length, we have the universality class (h, d) = (1/2, 1).

One final comment regarding binary trees concerns the work of Kirchner
[72] who found that river network scaling laws are “statistically inevitable.”
The problem with this seemingly general and hence rather damning result is
that the basis of the study was the examination of binary tree sub-networks.
Thus, no conclusions may be drawn from this work regarding real river net-
works. As we hope has been clearly demonstrated, any reasonable method
for producing general ensembles of networks must have them associated with
surfaces. Moreover, work by Costa-Cabral and Burges [21] has confirmed
variability of network laws for one particular model that works along these
lines.



32 CHAPTER 1: Introduction

1.6.5 Self-similar basins [(h, d) = (1/2, 1)]

An example of a network that belongs to the universality class (h, d) =
(1/2, 1) and is embedded in a surface is the so-called Peano basin [110].
Its definition is an iterative one demonstrated by the first three “basins” in
Figure 1.6. A modified version without trifurcations is illustrated on the
right so that all junctions are the usual forks of river networks. Technically,
this also allows for the proper application of Tokunaga’s description which
quite reasonably presumes that all junctions are forks.

Since main stream length rapidly approaches L‖, we have essentially that
l = L‖ so that d = 1. The important point to note here is that, by con-
struction, the basins are of unit aspect ratio. As d = 1, we see that Hack’s
exponent is by necessity 1/2.

Thus, the Peano basin belongs to what we will call the self-similar uni-
versality class defined by (h, d) = (1/2, 1). As with other simple models, the
Peano basin is not something we would expect to find in nature. Neverthe-
less, the general class of self-similar basins is a very reasonable one. Indeed,
that basins of all sizes be geometrically similar is what would be expected
by straightforward dimensional analysis.

1.6.6 Optimal channel networks [(h, d) = (2/3, 1), (1/2, 1),
or (3/5, 1)]

Another collection of networks with well understood universality classes com-
prises optimal channel networks [see 108, 110, and references therein]. These
models, known as OCN’s, are based on the conjecture that landscapes evolve
to a stationary state characterized by the minimization of the energy dissi-
pation rate ε̇, where

ε̇ ∼
∑

i

aisi ∼
∑

i

a1−θ
i . (1.24)

Here ai and si are the contributing area and the slope at the ith location on
a map, and are identified with a thermodynamic flux and force, respectively.
The second approximation comes from the empirical observation that 〈s〉a ∼
a−θ, where the average is taken over locations with the same contributing
area and, typically, θ ' 0.5 [41, 58, 110].

The conjecture of optimality is controversial. Although it is appealing
to seek a variational formulation of fluvial erosion [9, 119], it seems unlikely
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that its existence could be proven or disproved.4 It remains nevertheless
interesting to consider its ramifications.

Maritan et al. [86] have shown that OCN’s based on the formulation
(1.24) fall into two distinct universality classes, denoted respectively here
by (I) and (II), depending on the value of θ. In the simplest case (θ = 0),
one finds that the OCN’s belong to the universality class of directed random
networks. On the other hand, for 0 < θ ≤ 1/2, the OCN’s fall into the
self-similar class. A third class (III) is made possible by extending the model
to include a fixed, random erosivity at each site. This final class is deduced
to be (h, d) = (3/5, 1).

Much of the literature on OCN’s is devoted to numerical investigations.
As it turns out, the universality classes given above are not necessarily ob-
tained and differing exponents are reported. The reason lies in that fact that
the minimization process is fraught with local minima. Further, the results
depend on the details of the numerical method itself. As we will discuss be-
low, the actual scaling of real networks may be somewhat deceptively masked
by long crossovers between distinct regimes of scaling. It is conceivable that
a similar effect occurs with OCN’s. Locally, physical processes such as the
one suggested in the OCN formulation may conspire to produce certain scal-
ing exponents whereas at large scales, exponents in keeping with random
networks may become apparent.

1.6.7 Summary

Table 1.1 provides a summary of the foregoing networks and their corre-
sponding universality classes. As the table shows, we have identified five
distinct universality classes for river networks. Ranges for h and d for real
river networks are also indicated. In scaling theory, the importance of exact
results cannot be overlooked. The measurement of scaling exponents is a no-
toriously fickle exercise. For example, one might find that regression analysis
gives a tight error bound over any given variable range but that the choice
of the range greatly affects the estimate. Thus we need persuasive reasoning
to reject these known universality classes of networks and composite versions
thereof.

4A comparison with fluid mechanics is instructive. Here one starts with the Navier-
Stokes equations, so precise derivations are possible. For example, in the case of creeping
(Stokes) flow with fixed boundaries, the flow field does indeed minimize energy dissipation
rate [see 77, art. 344]. On the other hand, if the boundaries can move, cases may be found
in which the flow field maximizes, rather than minimizes, dissipation [57].
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network h d
Non-convergent flow 1 1

Directed random 2/3 1
Undirected random 5/8 5/4

Self-similar 1/2 1
OCN’s (I) 1/2 1
OCN’s (II) 2/3 1
OCN’s (III) 3/5 1
Real rivers 0.5–0.7 1.0–1.2

Table 1.1: Theoretical networks with analytically known universality classes. The
universality class of river networks is defined by the pair of exponents (h, d) where
h is Hack’s exponent (1.13) and d is the scaling exponent that represents stream
sinuosity. Each network is detailed in the text. The range of these exponents for
real river networks is shown for comparison.



CHAPTER 2

Unified view of network scaling
laws

Abstract. Scaling laws that describe the structure of river networks are
shown to follow from three simple assumptions. These assumptions are:
(1) river networks are structurally self-similar, (2) single channels are self-
affine, and (3) overland flow into channels occurs over a characteristic dis-
tance (drainage density is uniform). We obtain a complete set of scaling
relations connecting the exponents of these scaling laws and find that only
two of these exponents are independent. We further demonstrate that the
two predominant descriptions of network structure (Tokunaga’s law and Hor-
ton’s laws) are equivalent in the case of landscapes with uniform drainage
density. The results are tested with data from both real landscapes and a
special class of random networks.

2.1 Introduction

If it is true that scaling laws abound in nature [83], then river networks
stand as a superb epitome of this phenomenon. For over half a century,
researchers have uncovered numerous power laws and scaling behaviors in the
mathematical description of river networks [54, 58, 74, 78, 87, 127, 141, 143].
These scaling laws, which are usually parameterized by exponents or ratios
of fundamental quantities, have been used to validate scores of numerical
and theoretical models of landscape evolution [59, 73, 80, 82, 88, 110, 117,
122, 124, 130, 131, 152, 153, 154] and have even been invoked as evidence
of self-organized criticality [7, 110]. However, despite this widespread usage,

35
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there is as yet no fundamental understanding of the origin of scaling laws in
river networks.

It is the principal aim of this paper to bring together a large family
of these scaling laws within a simple, logical framework. In particular, we
demonstrate that from a base of three assumptions regarding network geom-
etry, all scaling laws involving planform quantities may be obtained. The
worth of these consequent scaling laws is then seen to rest squarely upon
the shoulders of the structural assumptions themselves. We also simplify
the relations between the derived laws, demonstrating that only two scaling
exponents are independent.

The paper is composed in the following manner. We first present pre-
liminary definitions of network quantities and a list of empirically observed
scaling laws. Our assumptions will next be fully stated along with evidence
for their validity. Several sections will then detail the derivations of the vari-
ous scaling laws, being a combination of both new insights of our own as well
as previous results. Progressing in a systematic way from our assumptions,
we will also be required to amend several inconsistencies persistent in other
analyses. The theory will be tested with comparisons to data taken from real
landscapes and Scheidegger’s random network model [112, 115].

2.2 The ordering of streams

A basic tool used in the analysis of river networks is the device of stream
ordering. A stream ordering is any scheme that attaches levels of significance
to streams throughout a basin. Most orderings identify the smallest tribu-
taries as lowest order streams and the main or ‘trunk’ stream as being of
highest order with the intermediary ‘stream segments’ spanning this range
in some systematic fashion. Stream orderings allow for logical comparisons
between different parts of a network and provide a basic language for the
description of network structure.

Here, we build our theory using the most common ordering scheme, one
that was first introduced by Horton in his seminal work on erosion [58].
Strahler later improved this method [128] and the resulting technique is com-
monly referred to as Horton-Strahler stream ordering [110]. The most natural
description of this stream ordering, due to Melton [89], is based on an iter-
ative pruning of a tree representing a network as shown in Figure 2.1. All
source (or external) streams are pared away from the tree, these being defined
as the network’s first order ‘stream segments’. A new tree is thus created
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Figure 2.1: Horton-Strahler stream ordering. (a) shows the basic network. (b)
is created by removing all source streams from the network in (a), these same
streams being denoted as first order ‘stream segments’. The new source streams
in the pruned network of (b) are labelled as second order stream segments and are
themselves removed to give (c), a third order stream segment.

along with a new collection of source streams and these are precisely the sec-
ond order stream segments of the original network. The pruning and order
identification continues in like fashion until only the trunk stream segment
of the river network is left. The overall order of the basin itself is identified
with the highest stream order present.

The usual and equivalent description details how stream orders change at
junctions [110]. When a stream segment of order ω1 merges with a stream
segment of order ω2, the outgoing stream will have an order of ω given by

ω = max(ω1, ω2) + δω1,ω2 (2.1)

where δ is the Kronecker delta. In other words, stream order only increases
when two stream segments of the same order come together and, otherwise,
the highest order is maintained by the outflowing stream.
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2.3 Planform network quantities and scaling

laws

The results of this paper pertain to networks as viewed in planform. As such,
any effects involving relief, the vertical dimension, are ignored. Nevertheless,
we show that a coherent theory of planform quantities may still be obtained.
This section defines the relevant quantities and their various permutations
along with scaling laws observed to hold between them. The descriptions of
these laws will be short and more detail will be provided in later sections.

The two essential features in river networks are basins and the streams
that drain them. The two basic planform quantities associated with these
are drainage area and stream length. An understanding of the distribution of
these quantities is of fundamental importance in geomorphology. Drainage
area, for example, serves as a measure of average discharge of a basin while
its relationship with the length of the main stream gives a sense of how basins
are shaped.

2.3.1 General network quantities

Figure 2.2 shows a typical drainage basin. The basin features are a, the area,
l, the length of the main stream, and L‖ and L⊥, the overall dimensions. The
main (or trunk) stream is the dominant stream of the network—it is traced
out by moving all the way upstream from the outlet to the start of a source
stream by choosing at each junction (or fork) the incoming stream with the
largest drainage area. This is not to be confused with stream segment length
which only makes sense in the context of stream ordering. We will usually
write L for L‖. Note that any point on a network has its own basin and
associated main stream. The sub-basin in Figure 2.2 illustrates this and has
its own primed versions of a, l, L‖ and L⊥. The scaling laws usually involve
comparisons between basins of varying size. These basins must be from the
same landscape and may or may not be contained within each other.

Several scaling laws connect these quantities. One of the most well known
is Hack’s law [54]. Hack’s law states that l scales with a as

l ∼ ah (2.2)

where h is often referred to as Hack’s exponent. The important feature of
Hack’s law is that h 6= 1/2. In particular, it has been observed that for
a reasonable span of basin sizes that 0.57 < h < 0.60 [52, 54, 87, 106].
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The actual range of this scaling is an unresolved issue with some studies
demonstrating that very large basins exhibit the more expected scaling of
h = 1/2 [94, 95, 96]. We simply show later that while the assumptions of
this paper hold so too does Hack’s law.

Further comparisons of drainage basins of different sizes yield scaling in
terms of L(= L‖), the overall basin length. Area, main stream length, and
basin width are all observed to scale with L [74, 75, 87, 141, 143],

a ∼ LD, l ∼ Ld, L⊥ ∼ LH . (2.3)

Turning our attention to the entire landscape, it is also observed that
histograms of stream lengths and basin areas reveal power law distribu-
tions [87, 110]:

P (a) ∼ a−τ and P (l) ∼ l−γ. (2.4)

There are any number of other definable quantities and we will limit
ourselves to a few that are closely related to each other. We write λ for
the average distance from a point on the network to the outlet of a basin
(along streams) and Λ for the unnormalized total of these distances. A
minor variation of these are λ̃ and Λ̃, where only distances from junctions in
the network to the outlet are included in the averages.

The scaling law involving these particular quantities is Langbein’s law [78]
which states that

Λ ∼ aβ. (2.5)

Similarly, we have λ ∼ Lϕ, Λ̃ ∼ aβ̃ and λ̃ ∼ Lϕ̃, [87].

2.3.2 Network quantities associated with stream or-
dering

With the introduction of stream ordering, a whole new collection of network
quantities appear. Here, we present the most important ones and discuss
them in the context of what we identify as the principal structural laws of
river networks: Tokunaga’s law and Horton’s laws.

2.3.3 Tokunaga’s law

Tokunaga’s law concerns the set of ratios, {Tω,ω′}, first introduced by Toku-
naga [97, 102, 144, 145, 146]. These ‘Tokunaga ratios’ represent the average



40 CHAPTER 2: Unified view of network scaling laws

�

�� �

��

� � � �

��

 
!�

� "�

Figure 2.2: A planform view of an example basin. The main defining parameters
of a basin are a, the drainage area, l, the length of the main stream, and L‖

and L⊥, the overall Euclidean dimensions. The sub-basin with primed quantities
demonstrates that a basin exists at every point in a network.

number of streams of order ω′ flowing into a stream of order ω as side trib-
utaries. In the case of what we will call a ‘structurally self-similar network’,
we have that Tω,ω′ = Tω−ω′ = Tν where ν = ω − ω′ since quantities involving
comparisons between features at different scales should only depend on the
relative separation of those scales. These Tν , in turn, are observed to be
dependent such that [144],

Tν+1/Tν = RT (2.6)

where RT is a fixed constant for a given network. Thus, all of Tokunaga’s
ratios may be specified by two fundamental parameters T1 and RT :

Tν = T1(RT )ν−1. (2.7)

We refer to this last identity as Tokunaga’s law.
The network parameter T1 is the average number of major side tributaries

per stream segment. So for a collection of stream segments of order ω, there
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will be on average T1 side tributaries of order ω−1 for each stream segment.
The second network parameter RT describes how numbers of side tributaries
of successively lower orders increase, again, on average. As an example,
consider that the network in Figure 2.1 is part of a much larger network for
which T1 = 2 and RT = 4. Figure 2.1 (b) shows that the third order stream
segment has two major side tributaries of second order which fits exactly
with T1 = 2 (Note that the two second order stream segments that come
together to create the third order stream segment are not side tributaries).
Figure 2.1 (a) further shows nine first order tributaries, slightly above the
average eight suggested by T2 = T1R

1
T = 8. Finally, again referring to

Figure 2.1 (a), there are 9/4 = 2.25 first order tributaries for each second
order stream segment, not far from the expected number T1 = 2.

2.3.4 Horton’s laws

Horton introduced several important measurements for networks in conjunc-
tion with his stream ordering [58]. The first is the bifurcation ratio, Rn. This
is the ratio of the number nω of streams of order ω to the number nω+1 of
streams of order ω+1 and is, moreover, observed to be independent of ω over a
large range. There is next the stream length ratio, Rl(s) = ¯l(s)ω+1/

¯l(s)ω, where
¯l(s)ω is the average length of stream segments of order ω. These lengths only

exist within the context of stream ordering. In contrast to these are the main
stream lengths, which we have denoted by l and described in section 2.3.1.
Main stream lengths are defined regardless of stream ordering and, as such,
are a more natural quantity. Note that stream ordering gives rise to a dis-
crete set of basins, one for each junction in the network. We therefore also
have a set of basin areas and main stream lengths defined at each junction.
Taking averages over basins of the same order we have āω and l̄ω to add to
the previously defined ¯l(s)ω and nω.

The connection between the two measures of stream length is an impor-
tant, if simple, exercise [113]. Assuming ¯l(s)ω+1 = Rl(s)

¯l(s)ω holds for all ω,
one has

l̄ω =

ω
∑

i=1

¯l(s)i =

ω
∑

i=1

(Rl(s))
i−1 ¯l(s)1 = l̄1

(Rl(s))
ω − 1

Rl(s) − 1
(2.8)

where l̄1 = ¯l(s)1 has been used. Since typically Rl(s) > 2 [72], l̄ω+1/l̄ω → Rl(s)

rapidly. For ω = 4 and Rl(s) = 2, the error is only three per cent. On the
other hand, starting with the assumption that main stream lengths satisfy
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Horton’s law of stream lengths for all ω implies that the same is true for
stream segments.

Thus, for most calculations, Horton’s law of stream lengths may involve
either stream segments or main streams and, for convenience, we will assume
that the law is fully satisfied by the former. Furthermore, this small calcu-
lation suggests that studies involving only third- or fourth-order networks
cannot be presumed to have reached asymptotic regimes of scaling laws. We
will return to this point throughout the paper.

Schumm [116] is attributed with the concrete introduction of a third and
final law that was also suggested by Horton. This last ratio is for drainage
areas and states that Ra = āω+1/āω. We will later show in section 2.7 that
our assumptions lead to the result that Ra ≡ Rn. At this stage, however, we
write Horton’s laws as the three statements

nω

nω+1
= Rn,

¯l(s)ω+1

¯l(s)ω
= Rl(s) , and

āω+1

āω
= Ra. (2.9)

A summary of all of the scaling laws presented in this section is provided
in Table 2.1. Empirically observed values for the relevant exponents and
ratios are presented in Table 2.2.

2.3.5 Scheidegger’s random networks

To end this introductory section, we detail some of the features of the ran-
dom network model of Scheidegger [112, 115]. Although originally defined
without reference to a real surface, Scheidegger networks may be obtained
from a completely uncorrelated landscape as follows. Assign a random height
between 0 and 1 at every point on a triangular lattice and then tilt the lat-
tice so that no local minima (lakes) remain. Scheidegger networks are then
traced out by following paths of steepest descent.

Surprisingly, these networks still exhibit all of the scaling laws observed
in real networks. It thus provides an important point in ‘network space’ and
accordingly, also provides an elementary test for any theory of scaling laws.
Exact analytical results for various exponents are known due to the work of
Takayasu et al. on the aggregation of particles with injection [61, 135, 136,
138, 139, 140]. While there are no analytic results for the Tokunaga ratio
T1 or the Horton ratios Rn and Rl(s) , our own simulations show that these
stream order laws are strictly obeyed. Table 2.2 lists the relevant exponents
and their values for the Scheidegger model along with those found in real
networks.
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Law: Name or description:
Tν = T1(RT )ν−1 Tokunaga’s law

l ∼ Ld self-affinity of single channels
nω+1/nω = Rn Horton’s law of stream numbers

¯l(s)ω+1/
¯l(s)ω = Rl(s) Horton’s law of stream segment lengths

l̄ω+1/l̄ω = Rl(s) Horton’s law of main stream lengths
āω+1/āω = Ra Horton’s law of stream areas

l ∼ ah Hack’s law
a ∼ LD scaling of basin areas

L⊥ ∼ LH scaling of basin widths
P (a) ∼ a−τ probability of basin areas
P (l) ∼ l−γ probability of stream lengths

Λ ∼ aβ Langbein’s law
λ ∼ Lϕ variation of Langbein’s law

Λ̃ ∼ aβ̃ as above

λ̃ ∼ Lϕ̃ as above

Table 2.1: A general list of scaling laws for river networks. All laws and quantities
are defined in section 2.3. The principal finding of this paper is that these scaling
laws follow from the first two relations, Tokunaga’s law (structural self-similarity)
and the self-affinity of single channels, and the assumption of uniform drainage
density (defined in section 2.4.3).

2.4 Assumptions

We start from three basic assumptions about the structure of river networks:
structural self-similarity, self-affinity of individual streams and uniformity of
drainage density. We define these assumptions and their relevant parameters
and then discuss their mutual consistency. We end with a discussion of
the correspondence between the laws of Tokunaga and Horton. It should
be stressed that while we make a case for each assumption there is also
considerable proof to ponder in the pudding that these ingredients create.

2.4.1 Structural self-similarity

Our first assumption is that networks are structurally self-similar. It has
been observed that river networks exhibit self-similarity over a large range
of scales [83, 110, 141]. Naturally, the physical range of this self-similarity is
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Quantity: Scheidegger: Real networks:
Rn 5.20 ± .05 3.0–5.0 [1]
Ra 5.20 ± .05 3.0–6.0 [1]
Rl(s) 3.00 ± .05 1.5–3.0 [1]
T1 1.30 ± .05 1.0–1.5 [145]
d 1 1.1 ± 0.01 [87]
D 3/2 1.8 ± 0.1 [87]
h 2/3 0.57–0.60 [87]
τ 4/3 1.43 ± 0.02 [87]
γ 3/2 1.8 ± 0.1 [106]
ϕ 1 1.05 ± 0.01 [87]
H 1/2 0.75–0.80 [87]
β 5/3 1.56 [78]
ϕ 1 1.05 ± 0.01 [87]

Table 2.2: Ratios and scaling exponents for Scheidegger’s random network model
and real networks. For Scheidegger’s model, exact values are known due to the
work of Takayasu et al. [61, 135, 136, 138, 139, 140] and approximate results
are taken from our own simulations. For real networks, the references given are
generally the most recent and further appropriate references may be found within
them and also in section 2.3.

restricted to lie between two scales. The large scale cutoff is the overall size
of the landscape and the small scale cutoff is of the order of the characteristic
separation of channels [90].

In order to quantify this phenomenon, we look to laws of network struc-
ture such as Tokunaga’s law and Horton’s laws of stream number and length.
We demonstrate in the following section that these descriptions are mutually
consistent within the context of our third assumption, uniformity of drainage
density. Thus, we may assume a network where both Tokunaga’s and Hor-
ton’s laws hold. For convenience, we write these laws as if they hold for all
orders down to the first order. Any actual deviations from these laws for low
orders will not affect the results since we are interested in how laws behave
for increasing stream order.
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2.4.2 Self-affinity of individual streams

Our second assumption is that individual streams are self-affine curves pos-
sessing a dimension d > 1, as introduced in equation (2.3). Empirical support
for this premise is to be found in [74, 87, 110, 141, 142, 143]. In reality, this is
at best a weak fractality with measurements generally finding d to be around
1.1 [87]. We assume d to be constant throughout a given network, true for
each stream independent of order.

In general, it is most reasonable to consider this in the sense of a growing
fractal: stream length l will grow like Ld where L is the overall length of
a box containing a portion of a stream. So, rather than examine one fixed
section of a stream, we take larger and larger pieces of it. Moreover, this is
the most reasonable method for actually measuring d for a real network.

2.4.3 Uniform drainage density

Our third and final assumption is that drainage density is uniform through-
out a network. For a given basin, the drainage density, ρ, is a measure of
the average area drained per unit length of stream by overland flow (i.e.,
excluding contributions from tributary streams). Its usual form is that given
by Horton [58]:

ρ =

∑

l(s)

a
(2.10)

where, for a given basin,
∑

l(s) represents the summed total length of all
stream segments of all orders and a is the drainage area. More generally,
one can in the same way measure a local drainage density for any connected
sections of a network within a landscape. Such sections should cover a region
at least l(s)1 in diameter, the typical length of a first order stream. Drainage
density being uniform means that the variation of this local drainage density
is negligible. There is good support in the literature for the uniformity of
drainage density in real networks [24, 46, 54, 55, 93, 118] while there are
some suggestions that it may vary slightly with order [54, 145].

Uniform drainage density may also be interpreted as the observation that
the average distance between channels is roughly constant throughout a land-
scape [58, 110], an estimate of this distance being simply 1/ρ. This is due to
the fact that there is a finite limit to the channelization of a landscape deter-
mined by a combination of soil properties, climate and so on. Implicit in this
assumption is that the channel network has reached its maximum extension
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into a landscape [48, 118]. Indeed, In the bold words of Glock [48], we are
considering river networks at the “time of completed territorial conquest.”
Furthermore, Shreve [118] notes that drainage density would be uniform in
a “mature topography developed in a homogeneous environment.”

Importantly, our third assumption connects the planform description to
the surface within which the network lies. Computationally, the uniformity
of drainage density allows for the use of the length of a stream as a proxy
for drainage area [24]. Further, the average distance between streams being
roughly constant implies that, on average, tributaries are spaced evenly along
a stream.

2.5 Tokunaga’s law and Horton’s laws are equiv-

alent

This section demonstrates an equivalence between Tokunaga’s law and Hor-
ton’s two laws of stream number and stream length in the case of a landscape
with uniform drainage density.

2.5.1 From Tokunaga’s law to Horton’s laws

Tokunaga has shown that Horton’s law for stream numbers follows from
Tokunaga’s law (given in equation (2.7)) [102, 145]. This follows from the
observation that nω, the number of streams of order ω, in a basin of order Ω
may be expressed as

nω = 2nω+1 +

Ω−ω
∑

ν=1

Tνnω+ν . (2.11)

The 2nω+1 accounts for the fact that each order ω + 1 stream is initiated
by the confluence of two streams of order ω. Presuming Tokunaga’s law, a
simple analysis of equation (2.11) shows that in the limit of large Ω, the ratio
nω/nω+1 does indeed approach a constant. This leads to an expression for
the Horton ratio Rn in terms of the two Tokunaga parameters T1 and RT

(first obtained by Tokunaga in [145]):

2Rn = (2 + RT + T1) +
[

(2 + RT + T1)
2 − 8RT

]1/2
. (2.12)

Tokunaga’s work has been recently generalized by Peckham who deduces
links to the other Horton ratios Rl(s) and Ra [102]. In contrast to the purely
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algebraic calculation of Rn, these results require the step of equating topo-
logical properties to metric basin quantities. In determining Rl(s) , Peckham
uses the number of side tributaries to a stream as an estimate of stream
segment length. This is based on the assumption that tributaries are evenly
spaced. As discussed in section 2.4.3, this even spacing of tributaries follows
for networks with uniform drainage density. Therefore, we may write, after
Peckham, that

¯l(s)ω ∝ 1 +
ω−1
∑

ν=1

Tν (2.13)

where the dimension of length absent on the right-hand side is carried by an
appropriate constant of proportionality. This sum is simply the total number
of tributaries that, on average, enter a stream of order ω. The number of
lengths of stream between tributaries is then simply one more in number.

Using Tokunaga’s law (equation (2.7)) we find that

¯l(s)ω+1/
¯l(s)ω = RT

(

1 + O(RT )−ω
)

, (2.14)

obtaining Horton’s stream length ratio with the simple identification:

Rl(s) = RT (2.15)

and we will use Rl(s) in place of RT throughout the rest of the paper. As
already noted we will see that Ra ≡ Rn for landscapes where drainage den-
sity is uniform. This redundancy means that there are only two independent
Horton ratios, Rl(s) and Rn, which sits well with the two independent quan-
tities required for Tokunaga’s law, T1 and RT . Presupposing this result, we
can invert equations (2.12) and (2.15) to obtain Tokunaga’s parameters from
the two independent Horton ratios:

RT = Rl(s) (2.16)

T1 = Rn − Rl(s) − 2 + 2Rl(s)/Rn. (2.17)

2.5.2 From Horton’s laws to Tokunaga’s law

We now provide an heuristic argument to show that Tokunaga’s law in the
form of equation (2.7) follows from Horton’s laws of stream number and
length and uniform drainage density. Note that even though we have shown
in equations (2.12), (2.15), and (2.17) that the parameters of Tokunaga’s law
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and those of Horton’s laws may be obtained from each other, it is not a priori
clear that this result would be true. Indeed, Tokunaga’s law contains more
direct information about network structure than Horton’s laws and it is the
additional constraint of uniform drainage density that provides the key.

Consider a stream of order ω along with its side tributaries of order ω′ = 1
through ω′ = ω − 1, the numbers of which are given by the usual Tν where
ν = ω − ω′ (see Figure 2.3). Since the presumed adherence to Horton’s laws
implies that a network is self-similar we need only consider the form of the Tν

and not the more general Tω′,ω. Now, again since networks are self-similar,
a typical stream of order ω + 1 can be obtained by scaling up the picture
of this order ω stream. As per Horton’s law of stream lengths, this is done
by increasing the length of each stream by a factor of Rl(s) (Figure 2.3 (a)
becomes Figure 2.3 (b)).

However, since order ω′ streams become ω′ + 1 streams in this rescaling,
the picture in Figure 2.3 (b) is missing first order streams. Also, the average
distance between tributaries has grown by a factor of Rl(s) . Therefore, to
retain the same drainage density, an extra (Rl(s) −1) first order streams must
be added for each link (one more than the number of tributaries) along this
new order ω + 1 stream (Figure 2.3 (c)). Since the number of first order
streams is now given by Tω+1 we have

Tω+1 = (Rl(s) − 1)

(

ω
∑

ν=1

Tν + 1

)

. (2.18)

It may be simply checked that this equation is satisfied, for large ω, by
Tokunaga ratios given by equation (2.7). Thus, Horton’s laws of stream
number and stream length and the uniform drainage density are seen to
imply Tokunaga’s law.

In general, Horton’s ratios rather than the parameters of Tokunaga’s law
will be the most useful parameters in what follows. In particular, we will
see that the two independent quantities Rn and Rl(s) will be needed only in
the form ln Rn/ lnRl(s) . All other exponents will be expressible as algebraic
combinations of ln Rn/ lnRl(s) and d, the fractal dimension of an individual
stream.

Furthermore, example (or modal) values for the parameters of Horton
and Tokunaga are [72, 145]

T1 = 1, RT = Rl(s) = 2, and Rn = 4. (2.19)

The parameters have been chosen so as to satisfy the inversion relations of
equation (2.17). As shown in Table 2.2, real networks provide some variation
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Figure 2.3: An example rescaling of a basin to demonstrate how Tokunaga’s law
follows from Horton’s laws and uniform drainage density. In the first step from (a)
to (b), the streams of the small network are rescaled in length by a factor of Rl(s) .
The second step from (b) to (c) demonstrates that for drainage density to remain
constant and uniform, a sufficient number of first order tributaries must be added.

around these modal values. These will be used as rough checks of accuracy
throughout the rest of the paper.

2.6 Hack’s law

One of the most intriguing scalings found in river networks is Hack’s law [54]
which relates main stream length to basin area as l ∼ ah. This equation has
been empirically shown to hold true for a large range of drainage basin sizes
on many field sites [110]. The salient feature is that for smaller basins [106],
h is typically found to be in the range (0.56, 0.60), whereas 0.5 would be
expected from simple dimensional analysis [110].

It should be emphasized that Hack’s law is only true on average as are, for
that matter, Tokunaga’s law and Horton’s laws. An extension of Hack’s law
to a more natural statistical description of the connection between stream
lengths and drainage areas was suggested by Maritan et al. [87] with some
further developments to be found in [30].
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2.6.1 Horton’s other law of stream numbers

In order to obtain Hack’s law, we will use the uniformity of drainage density
to estimate the area of an order Ω basin by calculating the total length of
streams within the same basin. So we simply need the typical length and
number of each stream order present. Taking the length of a source stream,
¯l(s)1, to be the finest resolution of the network and the basic unit of length,

the length of a stream segment of order ω is ¯l(s)ω = (Rl(s))
ω−1 ¯l(s)1. However,

in finding the frequency of such streams we find that some care must be taken
for the following reasons.

Horton’s law of stream numbers is potentially misleading in that it sug-
gests, at first glance, that within a basin of order ω there should be one
stream of order ω, Rn streams of order ω − 1, R2

n streams of order ω − 2 and
so on. Indeed, many calculations involving Horton’s laws use this assump-
tion [24, 74, 110, 111].

But Horton’s Rn actually provides the ratio of the number of streams
of consecutive orders as totalled for a whole basin. To illustrate this fact,
consider streams of order ω and ω + 1 within a basin of order Ω � ω. As
Tokunaga’s law makes clear, streams of order ω are not all found within sub-
basins of order ω + 1. Indeed, a certain number of order ω streams will be
tributaries to streams of order greater than ω + 1 (see the example network
of Figure 2.1 (a)). Tokunaga’s law shows that we should in fact expect T1 +2
rather than than Rn streams of order ω entering into a stream of order ω+1.
For the typical values T1 = 1 and Rn = 4 in (2.19) this is a substantial error.

We proceed then to find a corrected version of Horton’s law of stream
numbers. Returning to equation (2.11), we see that it is only valid in the
limit Ω → ∞. Defining n′(ω, Ω) as the actual number of streams of order ω
within a basin of order Ω, we have

n′(ω, Ω) = 2n′(ω + 1, Ω) +

Ω−ω
∑

ν=1

Tνn
′(ω + ν, Ω). (2.20)

This equation may be exactly solved. Considering the above expression for
n′(ω, Ω) and the corresponding one for n′(ω + 1, Ω) we can reduce this to a
simple difference equation,

n′(ω, Ω) = (2 + Rl(s) + T1)n
′(ω + 1, Ω) − 2Rl(s)n

′(ω + 2, Ω) (2.21)

which has solutions of the form µk. Applying the constraints that n′(Ω, Ω) =
1 and n′(Ω − 1, Ω) = T1 + 2, we obtain

n′(ω, Ω) = c(µ+)Ω−ω + (1 − c)(µ−)Ω−ω (2.22)
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where

2µ± = (2 + Rl(s) + T1) ±
[

(2 + Rl(s) + T1)
2 − 8Rl(s)

]1/2
(2.23)

and

c = Rn(Rn − Rl(s))/(R2
n − 2Rl(s)). (2.24)

Note that Rn = µ+ and we will use the notation R∗
n in place of µ−. This

observation regarding Horton’s law of stream numbers was first made by
Tokunaga [144] and later by Smart [120]. In particular, Tokunaga noted
that this would explain the deviation of Horton’s law for the highest orders
of a basin, a strong motivation for his work.

We can now define an effective Horton ratio, Rn
′(ω, Ω) as follows:

Rn
′(ω, Ω) = n′(ω − 1, Ω)/n′(ω, Ω)

= Rn

(

1 + O(R∗
n/Rn)(Ω−ω)

)

(2.25)

The typical values of Horton’s ratios in (2.19) give R∗
n = 1. In this case,

Rn
′(ω, Ω) converges rapidly to Rn with an error of around one per cent for

ω = Ω − 3.

2.6.2 Stream ordering version of Hack’s law

As discussed in section 2.4.3, an estimate of total drainage area of a basin
is given by the total length of all streams within the basin. Summing over
all stream orders and using the numbers n′(ω, Ω) given by equations (2.22)
and (2.23) we have that

āΩ ∝
Ω
∑

ω=1

n′(ω, Ω)(Rl(s))
ω−1

= c1(Rn)Ω + c2(Rl(s))
Ω − c3(R

∗
n)Ω (2.26)

where c1 = c/(Rn − Rl(s)), c3 = (1 − c)/(Rl(s) − R∗
n) and c2 = c3 − c1 with c

being given in equation (2.24). Slightly more complicated is the estimate of
ā(ω, Ω), the drainage area of a basin of order ω within a basin of order Ω:

ā(ω, Ω) ∝ 1/n′(ω, Ω)

ω
∑

ω′=1

n′(ω′, Ω)(Rl(s))
ω′−1

= 1/n′(ω, Ω)
[

c1(Rn)Ω(1 − (Rl(s)/Rn)ω)

+ c3(Rl(s))
ω(R∗

n)Ω−ω(1 − (R∗
n/Rl(s))

ω)
]

. (2.27)
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Now, for 1 � ω � Ω (typically, 3 < ω < Ω − 2 is sufficient), this expression
is well approximated as

ā(ω, Ω) ∼ (Rn)ω. (2.28)

since Rn > Rl(s) > R∗
n.

Thus, we have also shown here that Ra ≡ Rn. While it is true that we
would have obtained the same with a naive use of Horton’s laws, we have both
made the derivation thorough and established the correction terms found in
equation (2.27). This will be investigated further in the next section.

Finally, using this result and the estimate l̄ω ∝ (Rl(s))
ω from equation (2.8),

it follows that

l̄ω ∝ (Rl(s))
ω = (Rn)ω lnR

l(s)
/ ln Rn ∼ (āω)lnR

l(s)
/ ln Rn (2.29)

which is precisely Hack’s law. Comparing equations (2.29) and (2.2), Hack’s
exponent is found in terms of the Horton ratios Rn and Rl(s) as

h =
lnRl(s)

ln Rn
. (2.30)

There is one minor caveat to the derivation in (2.29) and, for that matter,
to most other derivations in this paper. Equation (2.29) only holds for the
characteristic areas and lengths āω and l̄ω. Since these quantities grow ex-
ponentially with ω, the derivation gives evenly spaced points on a log-log
plot lying on a straight line. Clearly, this would indicate that the actual
relationship is continuous and linear on a log-log plot. Indeed, there is no
obvious reason that a network would prefer certain lengths and areas. The
averaging of stream lengths and areas brought about by the imposition of
stream ordering necessarily removes all information contained in higher or-
der statistics. Motivated by this observation, generalizations of the laws of
Tokunaga, Horton and Hack to laws of distributions rather than averages is
in progress [30].

2.7 There are only two Horton ratios

In deriving Hack’s law in the previous section we obtained from equation (2.28)
that Ra ≡ Rn. This redundancy in Horton’s laws is implicit in, amongst oth-
ers, the works of Horton [58] and Hack [54] but has never been stated outright.
As noted previously, Peckham also obtains a similar result for a topological
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quantity, the number of source streams in a basin, that is used as an estimate
of area. Thus, we see that for a landscape with uniform drainage density,
Horton’s laws are fully specified by only two parameters Rn and Rl(s) . This
further supports our claim that Tokunaga’s law and Horton’s laws are equiv-
alent since we have shown that there is an invertible transformation between
(T1, RT ), the parameters of Tokunaga’s law, and (Rn, Rl(s)) (equations (2.12),
(2.15) and (2.17)). In this section, we present data from real networks that
support the finding Rn = Ra. We also address reported cases that do not
conform to this result and consider a possible explanation in light of the
correction terms established in equation (2.26).

Excellent agreement for the result Rn = Ra in real networks is to be
found in the data of Peckham [102]. The data is taken from an analysis of
digital elevation models (DEM’s) for the Kentucky River, Kentucky and the
Powder River, Wyoming. Figure 2.4 shows average area and stream number
plotted as a function of order for the Kentucky River while Figure 2.5 shows
the same for the Powder river. Note that stream number has been plotted
against decreasing stream order to make the comparison clear. The exponents
Ra and Rn are indistinguishable in both cases. For the Kentucky river,
Rn ≈ Ra = 4.65 ± 0.05 and for the Powder river, Rn ≈ Ra = 4.55 ± 0.05.
Also of note here is that the same equality is well satisfied by Scheidegger’s
model where numerical simulations yield values of Ra = 5.20 ± 0.05 and
Rn = 5.20 ± 0.05.

Note the slight deviation from a linear form for stream numbers for large
ω in both cases. This upwards concavity is as predicted by the modified
version of Horton’s law of stream numbers for a single basin, equation (2.22).

At the other extreme, the fit for both stream areas and stream numbers
extends to ω = 1. While this may seem remarkable, it is conceivable that at
the resolution of the DEM’s used, some orders of smaller streams may have
been removed by coarse-graining. Thus, ω = 1 may actually be, for example,
a third order stream. Note that such a translation in the value of ω does not
affect the determination of the ratios as it merely results in the change of an
unimportant multiplicative constant. If ωr is the true order and ω = ωr −m,
where m is some integer, then, for example,

nω ∝ (Rn)ω ∼ (Rn)ωr−m = const × (Rn)ωr . (2.31)

This is only a rough argument as coarse-graining does not necessarily remove
all streams of low orders.

At odds with the result that Rn ≡ Ra are past measurements that uni-
formly find Ra > Rn at a number of sites. For example, Rosso et al. in [111]
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Figure 2.4: Average area and stream number as functions of stream order for
Kentucky River, Kentucky (data taken from Peckham [102]). The stream number
data is reversed for simpler comparison with the area data. The Horton ratios are
estimated to be Rn ≈ Ra = 4.65 ± 0.05.
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Figure 2.5: Average area and stream number as functions of stream order for
Powder River, Wyoming (data taken from Peckham [102]). Here the ratios are
Rn ≈ Ra = 4.55 ± 0.05.

examine eight river networks and find Ra to be on average 40 % greater than
Rn. Clearly, this may be solely due to one or more of the our assumptions
not being satisfied. The most likely would be that drainage density is not
uniform. However, the limited size of the data sets points to a stronger
possibility which we now discuss.
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Figure 2.6: An explanation for the empirical finding that Rn < Ra. Fitting a line
to the stream area for only low ω would result in an overestimate of its asymptotic
slope. For stream number, its slope would be underestimated.

In the case of [111], the networks considered are all third or fourth order
basins with one exception of a fifth order basin. As shown by equation (2.26),
if Horton’s laws of stream number and length are exactly followed for all or-
ders, Horton’s law of area is not obeyed for lower orders. Moreover, the
former are most likely asymptotic relations themselves. It is thus unsatisfac-
tory to make estimates of Horton’s ratios from only three or four data points
taken from the lowest order basins. Note that the Kentucky and Powder
rivers are both eighth order networks and thus provide a sufficient range of
data.

We consider more precisely how the corrections to the scaling of area
given in equation (2.27) would affect the measurement of the Horton ratios.
Figure 2.6 shows an example of how stream number, length and area might
vary with ω. It is assumed, for the sake of argument, that stream number
and length scale exactly as per Horton’s laws and that area behaves as in
equation (2.27), satisfying Horton’s law of area only for higher values of ω.
The plot is made for the example values Rn = 4 and Rl(s) = 2. The prefactors
are chosen arbitrarily so the ordinate is of no real significance.

A measurement of Ra from a few data points in the low ω range will
overestimate its asymptotic value as will a similar measurement of Rn under-
estimate its true value. Estimates of Rn and Ra from a simple least squares
fit for various ranges of data are provided in Table 2.3.

Thus, the validity of the methods and results from past work are cast in
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ω range 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5 4, 5, 6, 7, 8
Rn 2.92 3.21 3.41 3.99
Ra 5.29 4.90 4.67 4.00

Table 2.3: Values of Horton ratios obtained from least squares estimates of slopes
for data represented in Figure 2.6. The range indicates the data points used in the
estimate of the slopes. The ratios obtained from the low order data demonstrate
substantial error whereas those obtained from the middle data essentially give the
true values of Rn = Ra = 4.

some doubt. A reexamination of data which has yielded Ra � Rn appears
warranted with an added focus on drainage density. Moreover, it is clear that
networks of a much higher order must be studied to produce any reasonable
results.

2.8 Fractal dimensions of networks:

a revision

A number of papers and works over the past decade have analyzed the rela-
tionships that exist between Horton’s laws and two fractal dimensions used
to describe river networks [37, 74, 76, 111, 125, 141, 143]. These are D, the
dimension which describes the scaling of the total mass of a network, and d,
the fractal dimension of individual streams that comprises one of our assump-
tions. In this section, we briefly review these results and point out several
inconsistencies. We then provide a revision that fits within the context of
our assumptions.

Our starting point is the work of La Barbera and Rosso [74] which was
improved by Tarboton et al. to give [143]

D = d
ln Rn

ln Rl(s)
. (2.32)

We find this relation to be correct but that the assumptions and deriva-
tions involved need to be redressed. To see this, note that equation (2.32)
was shown to follow from two observations. The first was the estimation
of N( ¯l(s)1), the number of boxes of size ¯l(s)1 × ¯l(s)1 required to cover the
network [74]:

N( ¯l(s)1) ∼ ( ¯l(s)1)
− ln Rn/ lnR

l(s) (2.33)
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where ¯l(s)1 is the mean length of first order stream segments. Note that
Horton’s laws were directly used in this derivation rather than the correctly
modified law of stream numbers for single basins (equation (2.22)). Never-
theless, the results are the same asymptotically. The next was the inclusion
of our second assumption, that single channels are self-affine [143]. Thus, it
was claimed, ¯l(s)1 ∼ δ−d where δ is now the length of the measuring stick.
Substitution of this into equation (2.33) gave

N(δ) ∼ δ−d ln Rn/ lnR
l(s) , (2.34)

yielding the stated expression for D, equation (2.32).
However, there is one major assumption in this work that needs to be

more carefully examined. The network is assumed to be of infinite order,
i.e., one can keep finding smaller and smaller streams. As we have stated,
there is a finite limit to the extension of any real network. The possible
practical effects of this are pictorially represented in Figure 2.7. Consider
that the network in question is of actual order Ω. Then there are three
possible scaling regimes. Firstly, for a ruler of length δ � ¯l(s)1, only the
network structure may be detected, given that individual streams are almost
one-dimensional. Here, the scaling exponent will be ln Rn/ lnRl(s) . Next, as
δ decreases, the fractal structure of individual streams may come into play
and the exponent would approach that of equation (2.34). Depending on
the given network, this middle section may not even be present or, if so,
perhaps only as a small deviation as depicted. Finally, the contribution due
to the overall network structure must vanish by the time δ falls below ¯l(s)1.
From this point on, the measurement can only detect the fractal nature of
individual streams and so the exponent must fall back to d.

We therefore must rework this derivation of equation (2.32). As suggested
in the definition of d in section 2.4.2, it is more reasonable to treat networks
as growing fractals. Indeed, since there is a finite limit to the extent of
channelization of a landscape, there is a lower cut-off length scale beyond
which most network quantities have no meaning. The only reasonable way
to examine scaling behavior is to consider how these quantities change with
increasing basin size. This in turn can only be done by comparing different
basins of increasing order as opposed to examining one particular basin alone.

With this in mind, the claim that equation (2.32) is the correct scaling
can be argued as follows. Within some basin of order Ω, take a sub-basin of
order ω. Consider N(ω), the number of boxes of side length ¯l(s)1 required to
cover the sub-network. This is essentially given by the total length of all the
streams in the network. This is given by the approximation of equation (2.28)
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Figure 2.7: A schematic representing the problems associated with measuring the
fractal dimension of a single river network. Here, the box counting method is
assumed and δ, which has the units of length, is the side length of the N(δ) boxes
needed to cover the network. For box sizes much greater than ¯l(s)1 × ¯l(s)1, only
the network structure is detected while for box sizes smaller than ¯l(s)1 × ¯l(s)1,
the measurement picks out the fractal dimension of individual streams. Some
deviation towards the scaling suggested by equation (2.34) may occur between
these two limits.

and so we have that N(ω) ∝ (Rn)ω. Using the fact that ¯l(s)ω = (Rl(s))
ω−1 ¯l(s)1

we then have that N(ω) ∝ (l(s)ω/ ¯l(s)1)
lnRn/ lnR

l(s) . The difference here is that
¯l(s)1 is fixed and pertains to the actual first order streams of the network. By

assumption, we have that l(s)ω ∝ Ld and thus

N(L) ∝ Ld ln Rn/ ln R
l(s) , (2.35)

which gives the same value for D as equation (2.32).
There are two other relations involving fractal dimensions that also need

to be reexamined. Firstly Rosso et al. [111] found that

d = 2
ln Rl(s)

lnRa
. (2.36)

Combining equations (2.32) and (2.36), they then obtained

D = 2
lnRn

lnRa
. (2.37)
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However, equation (2.36) and hence equation (2.37) are both incorrect.
There is a simple explanation for this discrepancy. In deriving equa-

tion (2.36), Rosso et al. make the assumption that h = d/2, a hypothesis
first suggested by Mandelbrot [83]. In arriving at the relation h = d/2, Man-
delbrot states in [83] that “(basin area)1/2 should be proportional to (distance
from source to mouth as the crow flies).” In other words, a ∝ L1/2. However,
as noted in equation (2.3), observations of real networks show that a ∝ LD

where D < 2 [87]. Furthermore, on examining the result h = ln Rl(s)/ lnRn

with the expression for D in equation (2.32) we see that

h =
d

D
, (2.38)

which suggests that this hypothesis is valid only when D = 2. Consider also
the test case of the Scheidegger model where h = 2/3, D = 3/2 and d = 1
(see Table 2.2). Using these values, we see that equation (2.38) is exactly
satisfied while the relation h = d/2 gives h = 1/2 6= 2/3.

Now, if h = d/D is used in place of h = d/2 in deriving equation (2.36)
then equation (2.32) is recovered. It also follows that equation (2.37) simpli-
fies to the statement Ra = Rn, further demonstrating the consistency of our
derivations. Thus, the two equations (2.36) and (2.37) become redundant
and the only connection between Horton’s ratios and network dimensions is
given by equation (2.32).

An important point is that D < 2 does not imply that drainage basins
are not space filling. This exponent shows how basin area changes when
comparing different basins with different values of L, i.e., a ∝ LD. Any given
single basin has of course a fractal dimension of 2. The equating of the way
basin sizes change with the actual dimension of any one particular basin is
a confusion evident in the literature (see, for example, [141]). Incorporating
the effects of measuring basin area with boxes of side length δ in the relation
a ∝ LD would lead to the form

aL(δ) ∝ δ−2LD, (2.39)

where the subscript L has been used to emphasize that different values of L
correspond to different basins. Thus, for any given basin (i.e., for fixed L),
the area scales with δ while for a fixed δ, areas of different basins scale as
per equation (2.3).

It should also be emphasized that the relationship found here between
Hack’s exponent and the fractal dimensions d and D is one that is explicitly
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derived from the assumptions made. The observation that basin areas scale
non-trivially with L follows from these starting points and thus there is no
need to assume it here.

2.9 Other scaling laws

We now address three remaining sets of scaling laws. These are probabil-
ity distributions for areas and stream lengths, scaling of basin shape and
Langbein’s law.

As introduced in equation (2.4), probability distributions for a and l are
observed to be power law with exponents τ and γ [110]. Both of these laws
have previously been derived from Horton’s laws. De Vries et al. [24] found a
relationship between τ , Rn and Rl(s) but did not include d in their calculations
while Tarboton et al. [141] obtained a result for γ that did incorporate d.

Again, both of these derivations use Horton’s laws directly rather than
the modified version of equation (2.22). Asymptotically, the same results are
obtained from both approaches,

τ = 2 − ln Rl(s)

ln Rn
and γ =

ln Rn

ln Rl(s)
. (2.40)

Using the form of the Hack exponent found in equation (2.38) and equa-
tion (2.32), further connections between these exponents are found:

τ = 2 − h and γ =
1

h
. (2.41)

One important outcome concerns the fact that only one of the exponents
of the triplet (h, τ, γ) is independent. Previously, for the particular case of
directed networks, this has been shown by Meakin et al. [88] and further
developed by Colaiori et al. [19]. Directed networks are those networks in
which all flow has a non-zero positive component in a given direction. In a
different setting, Cieplak et al. also arrive at this same conclusion for what
they deem to be the separate cases of self-similar and self-affine networks
although their assumptions are that d < 1 and D < 2 are mutually ex-
clusive contrary to empirical observations [18].1 In the case of non-directed
networks, Maritan et al. have found one scaling relation for these three ex-
ponents, γ = 1 + (τ − 1)/h and, therefore, that two of these three exponents

1See the discussion on allometry in Chapter 5 for an updated view.
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are independent. They further noted that τ = 2 − h is an “intriguing re-
sult” suggested by real data [87]. In the present context, we have obtained
this reduction of description in a very general way with, in particular, no
assumption regarding the directedness of the networks.

The scaling of basin shapes has been addressed already but it remains
to show how it simply follows from our assumptions and how the relevant
exponents are related. It is enough to show that this scaling follows from
Hack’s law. Now, the area of a basin is related to the longitudinal length
L and the width L⊥ by a = L⊥L, while the main stream length scales by
assumption like l ∼ Ld. Hence,

l ∼ ah ⇒ Ld ∼ (L⊥L)h

⇒ L⊥ ∼ Ld/h−1 = LD−1 (2.42)

where the fact that h = d/D has been used. Comparing this to equation (2.3)
we obtain the scaling relation

H = D − 1. (2.43)

The last set of exponents we discuss are those relating to Langbein’s
law [78]. Langbein found that Λ̃, the sum of the distances (along streams)
from stream junctions to the outlet of a basin, scales with the area of the
basin. Recently, Maritan et al. [87] introduced the quantity λ, which is an
average of Langbein’s Λ̃ except now the sum is taken over all points of the
network. Citing the case of self-organized critical networks, they made the
claim that

λ ∝ Lϕ. (2.44)

Further, they assumed that ϕ = d although it was noted that there is no clear
reason why this may be so since there are evident differences in definition (λ
involves distances downstream while d involves distances upstream). We find
this scaling relation to hold in the present framework. We further consider
the two related quantities Λ and λ̃, respectively the sum over all points and
the average over all junctions of distances along streams to the basin outlet.

The calculations are straightforward and follow the manner of previous
sections. We first calculate λ(ω, Ω), the typical distance to the outlet from
a stream of order ω in an order Ω basin. Langbein’s Λ̃, for example, is then
obtained as

∑Ω
ω=1 n(ω, Ω)λ(ω, Ω). We find the same scaling behavior regard-

less of whether sums are taken over all points or all junctions. Specifically
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we find

Λ ∼ Λ̃ ∼ a1+ln R
l(s)

/ ln Rn and λ ∼ λ̃ ∼ Ld (2.45)

yielding the scaling relations

β = β̃ = 1 + ln Rl(s)/ lnRn and ϕ̃ = ϕ = d. (2.46)

Note that the second pair of scaling relations admit other methods of mea-
suring d. The large amount of averaging inherent in the definition of the
quantity λ would suggest that it is a more robust method for measuring d
than one based on measurements of the sole main stream of the basins.

Maritan et al. [87] provide a list of real world measurements for various
exponents upon which several comments should be made. Of particular note
is the relationship between τ = 2 − h. This is well met by the cited values
1.41 < τ < 1.45 and 0.57 < h < 0.60. Also reasonable is the estimate of h
given by d/D (D = φ in their notation) which is 0.58 < h < 0.65.

The values of γ and ϕ, however, do not work quite so well. The latter
does not match d within error bars, although they are close in absolute value
with ϕ = 1.05 ± 0.01 and d = 1.10 ± 0.01. The length distribution exponent
γ may be found via 3 separate routes: γ = 1/h = D/d = 1/(2 − τ). The
second and third equalities have been noted to be well satisfied and so any
one of the 3 estimates of γ may be used. Take, for example, the range
0.58 < h < 0.59, which falls within that given by h = 2 − τ , h = d/D and
the range given for h itself. This points to the possibility that the measured
range 1.8 < γ < 1.9 is too high, since using γ = 1/h yields γ = 1.74 ± .02.
Also of note is that Maritan et al.’s own scaling relation γ = 1 + (τ − 1)/h
would suggest γ = 1.74 ± .05.

Better general agreement with the scaling relations is to be found in [106]
in which Rigon et al. detail specific values of h, τ and γ for some thirteen
river networks. Here, the relations τ = 2 − h and γ = 1/h are both well
satisfied. Comparisons for this set of data show that, on average and given
the cited values of h, both τ and γ are overestimated by only 2 per cent.

2.10 Concluding remarks

We have demonstrated that the various laws, exponents and parameters
found in the description of river networks follow from a few simple assump-
tions. Further, all quantities are expressible in terms of two fundamental
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numbers. These are a ratio of logarithms of Horton’s ratios, ln Rn/ lnRl(s) ,
and the fractal dimension of individual streams, d. There are only two in-
dependent parameters in network scaling laws. These Horton ratios were
shown to be equivalent to Tokunaga’s law in informational content with the
attendant assumption of uniform drainage density. Further support for this
observation is that both the Horton and Tokunaga descriptions depend on
two parameters each and an invertible transformation between them exists
(see equations (2.12), (2.15) and (2.17)). A summary of the connections
found between the various exponents is presented in Table 2.4.

It should be emphasized that the importance of laws like that of Toku-
naga and Horton in the description of networks is that they provide explicit
structural information. Other measurements such as the power law proba-
bility distributions for length and area provide little information about how
a network fits together. Indeed, information is lost in the derivations as the
Horton ratios cannot be recovered from knowledge of lnRn/ lnRl(s) and d
only.

The basic assumptions of this work need to be critically examined. De-
termining how often they hold and why they hold will follow through to a
greater understanding of all river network laws. One vital part of any river
network theory that is lacking here is the inclusion of the effects of relief,
the third dimension. Another is the dynamics of network growth: why do
mature river networks exhibit a self-similarity that gives rise to these scaling
laws with these particular values of exponents? Also, extensive studies of
variations in drainage density are required. The assumption of its uniformity
plays a critical role in the derivations and needs to be reexamined. Lastly, in
those cases where these assumptions are valid, the scaling relations gathered
here provide a powerful method of cross-checking measurements.

Finally, we note that work of a similar nature has recently been applied
to biological networks [151]. The assumption analogous to network self-
similarity used in the biological setting is considerably weaker as it requires
only that the network is a hierarchy. A principle of minimal work is then
claimed to constrain this hierarchy to be self-similar. It is conceivable that
a similar approach may be found in river networks. However, a generaliza-
tion of the concept of a hierarchy and perhaps stream ordering needs to be
developed since a ‘Tokunagic network’ is not itself a simple hierarchy.
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law: parameter in terms of Rn, Rl(s) and d:
Tν = T1(RT )ν−1 T1 = Rn − Rl(s) − 2 + 2Rl(s)/Rn

RT = Rl(s)

l ∼ Ld —
nω+1/nω = Rn —

¯l(s)ω+1/
¯l(s)ω = Rl(s) —

l̄ω+1/l̄ω = Rl(s) —
āω+1/āω ∼ Ra Ra = Rn

l ∼ ah h = ln Rl(s)/ lnRn

a ∼ LD D = d lnRn/ lnRl(s)

L⊥ ∼ LH H = d lnRn/ lnRl(s) − 1
P (a) ∼ a−τ τ = 2 − ln Rl(s)/ lnRn

P (l) ∼ l−γ γ = ln Rn/ lnRl(s)

Λ ∼ aβ β = 1 + lnRl(s)/ lnRn

λ ∼ Lϕ ϕ = d

Λ̃ ∼ aβ̃ β̃ = 1 + lnRl(s)/ lnRn

λ̃ ∼ Lϕ̃ ϕ̃ = d

Table 2.4: Summary of scaling laws and the scaling relations found between the
various exponents. Compare with table 2.1.



2.10 Concluding remarks 65

Acknowledgements

We are grateful to R. Pastor-Satorras, J. Pelletier, G. West, J. Weitz and
K. Whipple for useful discussions. The work was supported in part by NSF
grant EAR-9706220.



66 CHAPTER 2: Unified view of network scaling laws



CHAPTER 3

Fluctuations and deviations for
scaling laws

Abstract. This article is the first in a series of three papers investigating
the detailed geometry of river networks. Branching networks are a universal
structure employed in the distribution and collection of material. Large-
scale river networks mark an important class of two-dimensional branching
networks, being not only of intrinsic interest but also a pervasive natural
phenomenon. In the description of river network structure, scaling laws are
uniformly observed. Reported values of scaling exponents vary suggesting
that no unique set of scaling exponents exists. To improve this current un-
derstanding of scaling in river networks and to provide a fuller description
of branching network structure, here we report a theoretical and empirical
study of fluctuations about and deviations from scaling. We examine data
for continent-scale river networks such as the Mississippi and the Amazon
and draw inspiration from a simple model of directed, random networks. We
center our investigations on the scaling of the length of sub-basin’s domi-
nant stream with its area, a characterization of basin shape known as Hack’s
law. We generalize this relationship to a joint probability density and pro-
vide observations and explanations of deviations from scaling. We show that
fluctuations about scaling are substantial and grow with system size. We
find strong deviations from scaling at small scales which can be explained
by the existence of linear network structure. At intermediate scales, we find
slow drifts in exponent values indicating that scaling is only approximately
obeyed and that universality remains indeterminate. At large scales, we ob-
serve a breakdown in scaling due to decreasing sample space and correlations
with overall basin shape. The extent of approximate scaling is significantly
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restricted by these deviations and will not be improved by increases in net-
work resolution.

3.1 Introduction

Networks are intrinsic to a vast number of complex forms observed in the nat-
ural and man-made world. Networks repeatedly arise in the distribution and
sharing of information, stresses and materials. Complex networks give rise
to interesting mathematical and physical properties as observed in the Inter-
net [3], the “small-world” phenomenon [149], the cardiovascular system [156],
force chains in granular media [20], and the wiring of the brain [17].

Branching, hierarchical geometries make up an important subclass of all
networks. Our present investigations concern the paradigmatic example of
river networks. The study of river networks, though more general in ap-
plication, is an integral part of geomorphology, the theory of earth surface
processes and form. Furthermore, river networks are held to be natural ex-
emplars of allometry, i.e., how the dimensions of different parts of a structure
scale or grow with respect to each other [8, 35, 83, 108, 110]. The shapes of
drainage basins, for example, are reported to elongate with increasing basin
size [54, 87, 106].

At present, there is no generally accepted theory explaining the origin
of this allometric scaling. The fundamental problem is that an equation of
motion for erosion, formulated from first principles, is lacking. The situation
is somewhat analogous to issues surrounding the description of the dynamics
of granular media [65, 66], noting that erosion is arguably far more complex.
Nevertheless, a number of erosion equations have been proposed ranging from
deterministic [64, 73, 119, 121] to stochastic theories [9, 18, 47, 98, 99, 122].
Each of these models attempts to describe how eroding surfaces evolve dy-
namically. In addition, various heuristic models of both surface and network
evolution also exist. Examples include simple lattice-based models of ero-
sion [15, 73, 79, 137], an analogy to invasion percolation [124], the use of
optimality principles and self-organized criticality [110, 130, 132], and even
uncorrelated random networks [35, 82, 112]. Since river networks are an es-
sential feature of eroding landscapes, any appropriate theory of erosoion must
yield surfaces with network structures comparable to that of the real world.
However, no model of eroding landscapes or even simply of network evolu-
tion unambiguously reproduces the wide range of scaling behavior reported
for real river networks.
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A considerable problem facing these theories and models is that the values
of scaling exponents for river network scaling laws are not precisely known.
One of the issues we address in this work is universality [35, 87]. Do the
scaling exponents of all river networks belong to a unique universality class
or are there a set of classes obtained for various geomorphological conditions?
For example, theoretical models suggest a variety of exponent values for
networks that are directed versus non-directed, created on landscapes with
heterogeneous versus homogeneous erosivity and so on [35, 85, 86]. Clearly,
refined measurements of scaling exponents are imperative if we are to be sure
of any network belonging to a particular universality class. Moreover, given
that there is no accepted theory derivable from simple physics, more detailed
phenomenological studies are required.

Motivated by this situation, we perform here a detailed investigation of
the scaling properties of river networks. We analytically characterize fluctua-
tions about scaling showing that they grow with system size. We also report
significant and ubiquitous deviations from scaling in real river networks. This
implies surprisingly strong restrictions on the parameter regimes where scal-
ing holds and cautions against measurements of exponents that ignore such
limitations. In the case of the Mississippi basin, for example, we find that al-
though our study region span four orders of magnitude in length, scaling may
be deemed valid over no more than 1.5 orders of magnitude. Furthermore,
we repeatedly find the scaling within these bounds to be only approximate
and that no exact, single exponent can be deduced. We show that scaling
breaks down at small scales due to the presence of linear basins and at large
scales due to the inherent discreteness of network structure and correlations
with overall basin shape. Significantly, this latter correlation imprints upon
river network structure the effects and history of geology.

This paper is the first of a series of three on river-network geometry.
Having addressed scaling laws in the present work, we proceed in second
and third articles [33, 34] to consider river network structure at a more
detailed level. In [33] we examine the statistics of the “building blocks” of
river networks, i.e., segments of streams and sub-networks. In particular, we
analytically connect distributions of various kinds of stream length. Part of
this material is employed in the present article and is a direct generalization of
Horton’s laws [31, 58]. In the third article [34], we proceed from the findings
of [33] to characterize how these building blocks fit together. Central to this
last work is the study of the frequency and spatial distributions of tributary
branches along the length of a stream and is itself a generalization of the
descriptive picture of Tokunaga [144, 145, 146].
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3.2 Basin allometry

3.2.1 Hack’s law

In addressing these broader issues of scaling in branching networks, we set as
our goal to understand the river network scaling relationship between basin
area a and the length l of a basin’s main stream:

l ∝ ah. (3.1)

Known as Hack’s law [54], this relation is central to the study of scaling in
river networks [31, 87]. Hack’s exponent h is empirically found to lie in the
range from 0.5 to 0.7 [52, 54, 87, 90, 94, 95, 96, 106, 107]. Here, we postulate
a generalized form of Hack’s law that shows good agreement with data from
real world networks.

We focus on Hack’s law because of its intrinsic interest and also because
many interrelationships between a large number of scaling laws are known
and only a small subset are understood to be independent [31, 87]. Thus, our
results for Hack’s law will be in principle extendable to other scaling laws.
With this in mind, we will also discuss probability densities of stream length
and drainage area.

Hack’s law is stated rather loosely in equation (3.1) and implicitly involves
some type of averaging which needs to be made explicit. It is most usually
considered to be the relationship between mean main stream length and
drainage area, i.e.,

〈l〉 ∝ ah. (3.2)

Here, 〈·〉 denotes ensemble average and 〈l〉 = 〈l(a)〉 is the mean main stream
length of all basins of area a. Typically, one performs regression analysis on
log 〈l〉 against log a to obtain the exponent h.

3.2.2 Fluctuations and deviations

In seeking to understand Hack’s law, we are naturally led to wonder about
the underlying distribution that gives rise to this mean relationship. By
considering fluctuations, we begin to see Hack’s law as an expression of basin
morphology. What shapes of basins characterized by (a, l) are possible and
with what probability do they occur?

An important point here is that Hack’s law does not exactly specify basin
shapes. An additional connection to Euclidean dimensions of the basin is
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Figure 3.1: The Full Hack distribution for the Kansas, (a), and Mississippi, (b),
river basins. For each value of a, the distribution has been normalized along the l
direction by max lP (a, l). The topography used to extract areas and stream lengths
is a composite of United States Geological Survey three-arc-second digital elevation
models available on the Internet at www.usgs.gov. These datasets provide grids
of elevation data with horizontal resolution on the order of 90 meters. The Kansas
river was analyzed directly from the data while the Mississippi basin was studied on
a coarse-grained version with horizontal resolution of approximately 1000 meters.

required. We may think of a basin’s longitudinal length L‖ and its width L⊥.
The main stream length l is reported to scale with L‖ as

l ∝ Ld
‖, (3.3)

where typically 1.0 . d . 1.1, [87, 143]. Hence, we have a ∝ l1/h ∝
L

d/h
‖ . All other relevant scaling laws exponents can be related to the pair of

exponents (d, h) which therefore characterize the universality class of a river
network [31, 35]. If d/h = 2 we have that basins are self-similar whereas if
d/h < 2, we have that basins are elongating. So, while Hack’s law gives a
sense of basin allometry, the fractal properties of main stream lengths need
also be known in order to properly quantify the scaling of basin shape.

In addition to fluctuations, complementary insights are provided by the
observation and understanding of deviations from scaling. We are thus in-
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terested in discerning the regularities and quirks of the joint probability dis-
tribution P (a, l). We will refer to P (a, l) as the Hack distribution.

Hack distributions for the Kansas river basin and the Mississippi river
basin are given in Figures 3.1(a) and 3.1(b). Fluctuations about and devi-
ations from scaling are immediately evident for the Kansas and to a lesser
extent for the Mississippi. The first section of the paper will propose and
derive analytic forms for the Hack distribution under the assumption of uni-
form scaling with no deviations. Here, as well as in the following two papers
of this series [33, 34], we will motivate our results with a random network
model originally due to Scheidegger [112].

We then expand our discussion to consider deviations from exact scaling.
In the case of the Kansas river, a striking example of deviations from scal-
ing is the linear branch separated from the body of the main distribution
shown in Figure 3.1(a). This feature is less prominent in the lower resolution
Mississippi data. Note that this linear branch is not an artifact of the mea-
surement technique or data set used. This will be explained in our discussion
of deviations at small scales in the paper’s second section.

We then consider the more subtle deviations associated with intermediate
scales. At first inspection, the scaling appears to be robust. However, we
find gradual drifts in “exponents” that prevent us from identifying a precise
value of h and hence a corresponding universality class.

Both distributions also show breakdowns in scaling for large areas and
stream lengths and this is addressed in the final part of our section on devia-
tions. The reason for such deviations is partly due to the decrease in number
of samples and hence self-averaging, as area and stream lengths are increased.
However, we will show that the direction of the deviations depends on the
overall basin shape. We will quantify the extent to which such deviations
can occur and the effect that they have on measurements of Hack’s exponent
h.

Throughout the paper, we will return to the Hack distributions for the
Kansas and the Mississippi rivers as well as data obtained for the Amazon,
the Nile and the Congo rivers.

3.3 Fluctuations: an analytic form for the

Hack distribution

To provide some insight into the nature of the underlying Hack distribution,
we present a line of reasoning that will build up from Hack’s law to a scaling
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form of P (a, l). First let us assume for the present discussion of fluctuations
that an exact form of Hack’s law holds:

〈l〉 = θah (3.4)

where we have introduced the coefficient θ which we discuss fully later on.
Now, since Hack’s law is a power law, it is reasonable to postulate a gener-
alization of the form

P (l | a) =
1

ah
Fl

(

l

ah

)

. (3.5)

The prefactor 1/ah provides the correct normalization and Fl is the “scaling
function” we hope to understand. The above will be our notation for all
conditional probabilities. Implicit in equation (3.5) is the assumption that
all moments and the distribution itself also scale. For example, the qth
moment of P (l | a) is

〈lq(a)〉 ∝ aqh, (3.6)

which implies

〈lq(a)〉 = k−qh 〈lq(ak)〉 . (3.7)

where k ∈ R. Also, for the distribution P (l | a) it follows from equation (3.5)
that

khP (lkh | ak) =
kh

ahkh
Fl

(

lkh

ahkh

)

= P (l | a). (3.8)

We note that previous investigations of Hack’s law [87, 106] consider the
generalization in equation (3.5). Rigon et al. [107] also examine the behavior
of the moments of the distribution P (l | a) for real networks. Here, we will
go further to characterize the full distribution P (a, l) as well as both P (l | a)
and P (a | l). Along these lines, Rigon et al. [106] suggest that the function
Fl(x) is a “finite-size” scaling function analogous to those found in statistical
mechanics, i.e.: Fl(x) → 0 as x → ∞ and Fl(x) → c as x → 0. However,
as we will detail below, the restrictions on Fl(x) can be made stronger and
we will postulate a simple Gaussian form. More generally, Fl(x) should be a
unimodal distribution that is non-zero for an interval [x1, x2] where x1 > 0.
This is so because for any given fixed basin area a, there is a minimum and
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maximum l beyond which no basin exists. This is also clear upon inspection
of Figures 3.1(a) and 3.1(b).

We observe that neither drainage area nor main stream length possess
any obvious features so as to be deemed the independent variable. Hence,
we can also view Hack’s law as its inversion 〈a〉 ∝ l1/h. Note that the
constant of proportionality is not necessarily θ1/h and is dependent on the
nature of the full Hack distribution. We thus have another scaling ansatz as
per equation (3.5)

P (a | l) = 1/l1/hFa(a/l1/h). (3.9)

The conditional probabilities P (l | a) and P (a | l) are related to the joint
probability distribution as

P (a, l) = P (a)P (l | a) = P (l)P (a | l), (3.10)

where P (l) and P (a) are the probability densities of main stream length and
area. These distributions are in turn observed to be power laws both in real
world networks and models [88, 110, 138]:

P (a) ∼ Naa
−τ and P (l) ∼ Nll

−γ . (3.11)

where Na and Nl are appropriate prefactors and the tilde indicates asymp-
totic agreement between both sides for large values of the argument. Fur-
thermore, the exponents τ and γ are related to Hack’s exponent h via the
scaling relations [31, 87]

τ = 2 − h and γ = 1/h. (3.12)

Equations (3.5), (3.9), (3.10), (3.11), and (3.12) combine to give us two
forms for P (a, l),

P (a, l) = 1/a2F (l/ah) = 1/l2/hG(a/l1/h), (3.13)

where x−2F (x−h) = G(x) and, equivalently, F (y) = y−2G(y−1/h).

3.4 Random directed networks

We will use results from the Scheidegger model [112] to motivate the forms
of these distributions. In doing so, we will also connect with some problems
in the theory of random walks.
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Figure 3.2: Scheidegger’s model of random, directed networks. Flow is down
the page and at each site, stream flow is randomly chosen to be in one of the two
downward diagonals. Stream paths and basin boundaries are thus discrete random
walks.

Scheidegger’s model of river networks is defined on a triangular lattice
as indicated by Figure 3.2. Flow in the figure is directed down the page.
At each site, the stream flow direction is randomly chosen between the two
diagonal directions shown. Periodic boundary conditions are applied in all of
our simulations. Each site locally drains an area of α2, where the lattice unit
α is the distance between neighboring sites, and each segment of stream has a
length α. For simplicity, we will take α to be unity. We note that connections
exist between the Scheidegger model and models of particle aggregation [61,
138], Abelian sandpiles [25, 26, 27] and limiting cases of force chain models
in granular media [20].

Since Scheidegger’s model is based on random flow directions, the Hack
distributions have simple interpretations. The boundaries of drainage basins
in the model are random walks. Understanding Hack’s law therefore amounts
to understanding the first collision time of two random walks that share the
same origin in one dimension. If we subtract the graph of one walk from the
other, we see that the latter problem is itself equivalent to the first return
problem of random walks [39].

Many facets of the first return problem are well understood. In particular,
the probability of n, the number of steps taken by a random walk until it
first returns to the origin, is asymptotically given by

P (n) ∼ 1√
2π

n−3/2. (3.14)

But this number of steps is also the length of the basin l. Therefore, we have

P (l) ∼ 2

π
l−3/2, (3.15)
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Figure 3.3: Cross-Sectional scaling functions of the Hack distribution for the Schei-
degger model with lattice constant equal to unity. Both distributions are normal-
ized. The right distribution is for l fixed and a varying and is postulated to be
a normal distribution. The left distribution for a fixed and l varying and is a
form of an inverse Gaussian [40]. The data used was obtained for all sites with
with l ≥ 100 and a ≥ 500 respectively. Each distribution was obtained from ten
realizations of the Scheidegger model on a 104×104 lattice.

where because we are considering the difference of two walks, we use P (l) =
P (n/2)|n=l. Also, we have found the prefactor Nl = 2/π.

We thus have that γ = 3/2 for the Scheidegger model. The scaling
relations of equation (3.12) then give h = 2/3 and τ = 4/3. The value of h
is also readily obtained by noting that the typical area of a basin of length l
is a ∝ l · l1/2 = l3/2 = l1/h since the boundaries are random walks.

3.5 Area-length distribution for random, di-

rected networks

Something that is less well studied is the joint distribution of the area en-
closed by a random walk and the number of steps to its first return. In terms
of the Scheidegger model, this is precisely the Hack distribution.

We motivate some general results based on observations of the Schei-
degger model. Figure 3.3 shows the normalized distributions P (al−3/2) and
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P (la−2/3) as derived from simulations of the model. Given the scaling ansatzes
for P (l | a) and P (a | l) in equations (3.5) and (3.9), we see that P (y =
la−2/3) = Fl(y) and P (x=al−3/2) = Fa(x).

Note that we have already used Hack’s law for the Scheidegger model with
h = 2/3 to obtain these distributions. The results are for ten realizations of
the model on a 104 by 104 lattice, taking 107 samples from each of the ten
instances. For P (a | l), only sites where l ≥ 100 were taken, and similarly,
for P (l | a), only sites where a ≥ 500 were included in the histogram.

We postulate that the distribution P (y = la−2/3) is a Gaussian having
the form

P (l | a) =
1√

2πa2/3η
exp{−(la−2/3 − θ)2/2η2} (3.16)

We estimate the mean of Fl to be θ ' 1.675 (this is the same θ as found in
equation (3.4)) and the standard deviation to be η ' 0.321. The fit is shown
in Figure 3.3 as a solid line. The above equation agrees with the form of the
scaling ansatz of equation (3.5) and we now have the assertion that Fl is a
Gaussian defined by the two parameters θ and η.

Note that the θ and η are coefficients for the actual mean and standard
deviation. In other words, for fixed a, the mean of P (l | a) is θa2/3 and its
standard deviation is ηa2/3. Having observed their context, we will refer to θ
and η as the Hack mean coefficient and Hack standard deviation coefficient.

From this starting point we can create P (a, l) and P (a | l), the latter pro-
viding a useful test. Since P (a) ∼ Naa

−τ = Naa
−4/3, as per equation (3.11),

we have

P (a, l) =
Na

a4/3

1√
2πa2/3η

exp{−(la−2/3 − θ)2/2η2},

=
Na√
2πa2η

exp{−(la−2/3 − θ)2/2η2}. (3.17)

As expected, we observe the form of equation (3.17) to be in accordance with
that of equation (3.13). Note that the scaling function F (and equivalently
G) is defined by the three parameters θ, η and Na, the latter of which may
be determined in terms of the former as we will show below. Also, since
we expect all scaling functions to be only asymptotically correct, we cannot
use equation (3.17) to find an expression for the normalization Na. Equa-
tion (3.17) ceases to be valid for small a and l. However, we will be able
to do so once we have P (a | l) since we are able to presume l is large and
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therefore that the scaling form is exact. Using equation (3.15) and the fact
that P (a | l) = P (a, l)/P (l) from equation (3.10) we then have

P (a | l) =
πl3/2

2

Na√
2πa2η

exp{−(l/a2/3 − θ)2/2η2},

=
Na

√
πl3/2

23/2a2η
exp{−(l/a2/3 − θ)2/2η2},

=
1

l3/2

Na

√
π

23/2η
(a/l3/2)−2

× exp{−((a/l3/2)−2/3 − θ)2/2η2}. (3.18)

In rearranging the expression of P (a | l), we have made clear that its form
matches that of equation (3.5).

A closed form expression for the normalization factor Na may now be
determined by employing the fact that

∫∞

a=0
daP (a | l) = 1.

1 =

∫ ∞

a=0

daP (a | l),

=

∫ ∞

a=0

da

l3/2

Na

√
π

23/2η
(a/l3/2)−2

× exp{−((a/l3/2)−2/3 − θ)2/2η2},

=
Na

√
3π

25/2η

∫ ∞

u=0

duu1/2 exp{−(u − θ)2/2η2}, (3.19)

where we have used the substitution a/l3/2 = u−3/2 and hence also l−3/2 da =
(−3/2)u−5/2 du. We therefore have

Na =
25/2η√

3π

[
∫ ∞

u=0

duu1/2 exp{−(u − θ)2/2η2}
]−1

. (3.20)

We may thus write down all of the scaling functions Fl, Fa, F and G for
the Scheidegger model:

Fl(z) =
1√
2πη

exp{−(z − θ)2/2η2}, (3.21)

Fa(z) =
Na

√
π

23/2η
z−2 exp{−(z−2/3 − θ)2/2η2}, (3.22)

F (z) =
Na√
2πη

exp{−(z − θ)2/2η2}, and (3.23)

G(z) =
2Na√
π23/2η

z−2 exp{−(z−2/3 − θ)2/2η2}. (3.24)
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Recall that all of these forms rest on the assumption that Fl(z) is a
Gaussian. In order to check this assumption, we return to Figure 3.3. The
empirical distribution P (z = a/l3/2) is shown on the left marked with circles.
The solid line through these points is Fa(z) as given above in equation (3.21).
There is an excellent match so we may be confident about our proposed
form for Fa(z). We note that the function Fa(z) may be thought of as a
fractional inverse Gaussian distribution, the inverse Gaussian being a well
known distribution arising in the study of first passage times for random
walks [39]. It is worth contemplating the peculiar form of P (a | l) in terms
of first return random walks. Here, we have been able to postulate the
functional form of the distribution of areas bound by random walks that first
return after n steps. If one could understand the origin of the Gaussian and
find analytic expressions for θ and η, then the problem would be fully solved.

3.6 Area-length distribution extended to real

networks

We now seek to extend these results for Scheidegger’s model to real world
networks. We will look for the same functional forms for the Hack distribu-
tions that we have found above. The conditional probability distributions
pertaining to Hack’s law take on the forms

P (l | a) = 1/a−hFl(la
−h) =

a−h

√
2πη

exp{−(la−h − θ)2/2η2}, (3.25)

and

P (a | l) = l−1/hFa(al−1/h) = l−1/h Na√
2πNlη

(al−1/h)−2 exp{−((al−1/h)−h − θ)2/2η2},

(3.26)

and the full Hack distribution is given by

P (a, l) = a2F (la−h) = l−2/hG(al−1/h)

=
Na√
2πηa2

exp{−(la−h − θ)2/2η2}. (3.27)

with Na determined by equation (3.20). The three parameters h, the Hack
exponent, θ, the Hack mean coefficient, and η, the Hack standard deviation
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Figure 3.4: Cross-sectional scaling functions of the Hack distribution for the Mis-
sissippi. The estimates used for Hack’s exponent are h = 0.55 and h = 0.50
respectively, the determination of which is discussed in section 3.7. The fits indi-
cated by the smooth curves to the data are made as per the Scheidegger model in
Figure 3.3 and according to equations (3.25) and (3.25). The values of the Hack
mean coefficient and standard deviation coefficient are estimated to be θ ' 0.80
and η ' 0.20.

coefficient, are in principle landscape dependent. Furthermore, in η we have
a basic measure of fluctuations in the morphology of basins.

Figures 3.4 and 3.5 present Hack scaling functions for the Mississippi and
Nile river basins. These Figures is to be compared with the results for the
Scheidegger model in Figure 3.3.

For both rivers, Hack’s exponent h was determined first from a stream
ordering analysis (we discuss stream ordering later in Section 3.10). Esti-
mates of the parameters θ and η were then made using the scaling function
Fl presuming a Gaussian form.

We observe the Gaussian fit for the Mississippi is more satisfactory than
that for the Nile. These fits are not rigorously made because even though
we have chosen data ranges where deviations (which we address in the fol-
lowing section) are minimal, deviations from scaling do still skew the distri-
butions. The specific ranges used to obtain Fl and Fa respectively are for
the Mississippi: 8.5 < log10 a < 9.5 and 4.75 < log10 l < 6, and for the Nile:
9 < log10 a < 11 and 5.5 < log10 l < 6 (areas are in km2 and lengths km).
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Figure 3.5: Cross-sectional scaling functions of the Hack distribution for the Nile.
The top and right axes correspond to Fa and the bottom and left to Fl. The
Hack exponent used is h = 0.50 and the values of the Hack mean coefficient
and standard deviation coefficient are estimate to be θ ' 2.45 and η ' 0.50.
The data for the Nile and Congo was obtained from the United States Geological
Survey’s 30-arc-second Hydro1K dataset which may be accessed on Internet at
edcftp.cr.usgs.gov. Note that these Hydro1K datasets have undergone the
extra processing of projection onto a uniform grid.

Furthermore, we observe that the estimate of h has an effect in the resulting
forms of Fl and Fa. Nevertheless, here we are attempting to capture the
essence of the generalized form of Hack’s law in real networks.

We then use the parameters h, θ and η and equation (3.26) to construct
our theoretical Fa, the smooth curves in Figures 3.4 and 3.5. As for the
Scheidegger model data in Figure 3.3, we see in both examples approximate
agreement between the measured Fa and the one predicted from the form of
Fl. Table 3.1 shows estimates of h, θ and η for the five major river basins
studied.

Given our reservations about the precision of these values of θ and η,
we are nevertheless able to make qualitative distinctions. Recalling that
〈l〉 = θah, we see that, for fixed h, higher values of θ indicate relatively
longer stream lengths for a given area and hence longer and thinner basins.
The results therefore suggest the Nile, and to a lesser degree the Amazon,
have basins with thinner profiles than the Congo and, in particular, the Mis-
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River network θ η h
Mississippi 0.80 0.20 0.55
Amazon 1.90 0.35 0.52
Nile 2.45 0.50 0.50
Kansas 0.70 0.15 0.57
Congo 0.89 0.18 0.54

Table 3.1: Estimates of Hack distribution parameters for real river networks. The
scaling exponent h is Hack’s exponent. The parameters θ and η are coefficients of
the mean and standard deviation of the conditional probability density function
P (l | a) and are fully discussed in the text. The dataset used for the Amazon has a
horizontal resolution of approximately 1000 meters and comes from 30 arc second
terrain data provided by the National Imagery and Mapping Agency available on
the Internet at www.nima.mil.

sissippi and Kansas. This seems not unreasonable since the Nile is a strongly
directed network constrained within a relatively narrow overall shape. This
is somewhat in spite of the fact that the shape of an overall river basin is not
necessarily related to its internal basin morphology, an observation we will
address later in Section 3.10.

The importance of θ is tempered by the value of h. Hack’s exponent
affects not only the absolute measure of stream length for a given area but
also how basin shapes change with increasing area. So, in the case of the
Kansas the higher value of h suggests basin profiles thin with increasing size.
This is in keeping with overall directedness of the network. Note that our
measurements of the fractal dimension d of stream lengths for the Kansas
place it to be d = 1.04 ± 0.02. Therefore, d/h ' 1.9 < 2 and elongation is
still expected when we factor in the scaling of l with L‖.

The Nile and Amazon also all have relatively high η indicating greater
fluctuations in basin shape. In comparison, the Mississippi, Kansas and
Congo appear to have less variation. Note that the variability of the Kansas
is in reasonable agreement with that of the whole Mississippi river network
for which it is a sub-basin.

Finally, regardless of the actual form of the distribution underlying Hack’s
law, fluctuations are always present and an estimate of their extent is an
important measurement. Thus, the Hack mean and standard deviation coef-
ficients, θ and η, are suggested to be of sufficient worth so as to be included
with any measurement of the Hack exponent h.
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Figure 3.6: The mean version of Hack’s law for the Kansas, (a), and the Mississippi,
(b). The units of lengths and areas are meters and square meters. These are
calculated from the full Hack distributions shown in Figures 3.1(a) and 3.1(b) by
finding 〈l〉 for each value of basin area a. Area samples are taken every 0.02 orders
of magnitude in logarithmic space. The upper dashed lines represent a slope of
unity in both plots and the lower lines the Hack exponents 0.57 and 0.55 for the
Kansas and Mississippi respectively. For the Kansas, there is a clear deviation
for small area which rolls over into a region of very slowly changing derivative
before breaking up at large scales. Deviations from scaling are present for the
lower resolution dataset of the Mississippi but to a lesser extent.

3.7 Deviations from scaling

In generalizing Hack’s law, we have sought out regions of robust scaling,
discarding ranges where deviations become prominent. We now bring our
attention to the nature of the deviations themselves.

We observe three major classes of deviations which we will define by the
scales at which they occur: small, intermediate and large. Throughout the
following sections we primarily consider deviations from the mean version of
Hack’s law, 〈l〉 = θah, given in equation (3.4). Much of the understanding
we gain from this will be extendable to deviations for higher moments.

To provide an overview of what follows, examples of mean-Hack distri-
butions for the Kansas river and the Mississippi are shown in Figures 3.6(a)
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Figure 3.7: The linearity of Hack’s law at small scales for the Kansas river. The
linear regime enters a crossover region after almost 1.5 orders of magnitude in area.
This is an expanded detail of the mean Hack’s law given in Figure 3.6(a) and areas
and lengths are in square meters and meters.

and 3.6(b). Hack’s law for the Kansas river exhibits a marked deviation for
small areas, starting with a near linear relationship between stream length
and area. A long crossover region of several orders of magnitude in area then
leads to an intermediate scaling regime wherein we attempt to determine the
Hack exponent h. In doing so, we show that such regions of robust scaling are
surprisingly limited for river network quantities. Moreover, we observe that,
where present, scaling is only approximate and that no exact exponents can
be ascribed to the networks we study here. It follows that the identification
of universality classes based on empirical evidence is a hazardous step.

Finally, the approximate scaling of this intermediate region then gives
way to a break down in scaling at larger scales due to low sampling and cor-
relations with basin shape. The same deviations are present in the relatively
coarse-grained Mississippi data but are less pronounced.

3.8 Deviations at small scales

At small scales, we find the mean-Hack distribution to follow a linear rela-
tionship, i.e., l ∝ a1. This feature is most evident for the Kansas river as
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Figure 3.8: Origin of the linear branch in the Hack distribution. The sub-basins
labeled 1 and 2 depicted on the left have areas a1 and a2 and lengths l1 and l2.
These sub-basins combine to form a basin of area a3 = a1 + a2 and main stream
length l3 = max l1, l2 = l2. Since sub-basin 1 is a linear sub-network (a valley)
the pair (a1, l1) lie along the linear branch of the Hack distribution as shown on
the right. Points along the main stream of sub-basin 1 lie along the dashed line
leading to the coordinate (a1, l1). On combining with the second basin, the jump
in the resultant area creates a jump from (a1, l1 to (a3, l2) in the main body of the
Hack distribution.

shown in Figure 3.6(a) and in more detail in Figure 3.7. The linear regime
persists for nearly 1.5 orders of magnitude in basin area. To a lesser extent,
the same trend is apparent in the Mississippi data, Figure 3.6(b).

Returning to the full Hack distribution of Figures 3.1(a) and 3.1(b), we
begin to see the origin of this linear regime. In both instances, a linear
branch separates from the body of the main distribution. Since l cannot
grow faster than a1, the linear branch marks an upper bound on the extent
of the distribution in (a, l) coordinates. When averaged to give the mean-
Hack distribution, this linear data dominates the result for small scales.

We find this branch evident in all Hack distributions. It is not an artifact
of resolution and in fact becomes more pronounced with increased map preci-
sion. The origin of this linear branch is simple: data points along the branch
correspond to positions in narrow sub-networks, i.e., long, thin “valleys.”
To understand the separation of this linear branch from the main body of
the distribution, consider Figure 3.8 which depicts a stream draining such a
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valley with length and area (l1, a1) that meets a stream from a basin with
characteristics (l2, a2). The area and length of the basin formed at this junc-
tion is thus (a3, l3) = (a1 + a2, max(l1, l2)) (in the Figure, max(l1, l2) = l2).
The greater jump in area moves the point across into the main body of the
Hack distribution, creating the separation of the linear branch.

In fact, the full Hack distribution is itself comprised of many such linear
segments. As in the above example, until a stream does not meet any streams
of comparable size, then its area and length will roughly increase in linear
fashion. When it does meet such a stream, there is a jump in area and the
trace of a new linear segment is started in the distribution. We will see this
most clearly later on when we study deviations at large scales.

For very fine scale maps, on the order of meters, we might expect to pick
up the scale of the unchannelized, convex regions of a landscape, i.e., “hill-
slopes” [28]. This length scale represents the typical separation of branches
at a network’s finest scale. The computation of stream networks for these
hillslope regions would result in largely non-convergent (divergent or par-
allel) flow. Therefore, we would have linear “basins” that would in theory
contribute to the linear branch we observe [35]. Potentially, the crossover in
Hack’s law could be used as a determinant of hillslope scale, a crucial param-
eter in geomorphology [28, 29]. However, when long, thin network structures
are present in a network, this hillslope scale is masked by their contribution.

Whether because of the hillslope scale or linear network structure, we see
that at small scales, Hack’s law will show a crossover in scaling from h = 1
to a lower exponent. The crossover’s position depends on the extent of linear
basins in the network. For example, in the Kansas River basin, the crossover
occurs when (l, a) = (4 × 103m, 107m2). Since increased map resolution can
only increase measures of length, the crossover’s position must occur at least
at such a length scale which may be many orders of magnitude greater than
the scale of the map.

However, the measurement of the area of such linear basins will poten-
tially grow with coarse-graining. Note that for the Mississippi mean-Hack dis-
tribution, the crossover begins around a = 106.5 m2 whereas for the Kansas,
the crossover initiates near a = 105.5 m2 but the ends of the crossovers in both
cases appear to agree, occurring at around a = 107 m2. Continued coarse-
graining will of course eventually destroy all statistics and introduce spurious
deviations. Nevertheless, we see here that the deviation which would only be
suggested in the Mississippi data is well confirmed in the finer-grain Kansas
data.
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Figure 3.9: Variation in Hack’s exponent for the Kansas, (a), and the Mississippi,
(b). The area a is in m2. The plots are derivatives of the mean-Hack distributions
given in Figures 3.6(a) and 3.6(b). Both derivatives have been smoothed by taking
running averages over 0.64 orders of magnitude in a. For the Kansas, the dashed
line is set at h = 0.57, Hack’s exponent estimated via simple regression analysis
for points with 107 < a < 1010 m2. The local exponent is seen to gradually rise
through the h = 0.57 level indicating scaling is not robust. For the Mississippi in
(b), the dashed line is a Hack exponent of 0.55 calculated from regression on data
in the interval 109 < a < 1011.5 m2. The local Hack exponent is seen to gradually
rise and fall about this value.

3.9 Deviations at intermediate scales

As basin area increases, we move out of the linear regime, observing a
crossover to what would be considered the normal scaling region of Hack’s
law. We detail our attempts to measure the Hack exponents for the Kansas
and Mississippi examples. Rather than relying solely on a single regression
on a mean-Hack distribution, we employ a more precise technique that ex-
amines the distribution’s derivative. As we will show, we will not be able to
find a definite value for the Hack exponent in either case, an important result
in our efforts to determine whether or not river networks belong to specific
universality classes.

To determine h, we consider Hack’s law (equation (3.4)) explicitly in
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logarithmic coordinates,

log10 〈l(a)〉 = log10 θ + h log10 a. (3.28)

The derivative of this equation with respect to log10 a then gives Hack’s
exponent as a function of area,

h(a) =
d

d log10 a
log10 〈l(a)〉. (3.29)

We may think of h(a) as a “local Hack exponent.” Note that non-constant
trends in h(a) indicate scaling does not hold. We calculate the discrete
derivative as above for the Kansas and Mississippi. We smooth the data by
taking running averages with varying window sizes of n samples, the results
for n = 32 being shown in Figures 3.9(a) and 3.9(b) where the spacing of
log a is 0.02 orders of magnitude. Thus, the running averages for the figures
are taken over corresponding area ranges 0.64 orders of magnitude.

Now, if the scaling law in question is truly a scaling law, the above type
of derivative will fluctuate around a constant value of exponent over several
orders of magnitude. With increasing n, these fluctuations will necessarily
decrease and we should see the derivative holding steady around the expo-
nent’s value.

At first glance, we notice considerable variation in h(a) for both data sets
with the Kansas standing out. Fluctuations are reduced with increasing n but
we observe continuous variation of the local Hack exponent with area. For
the example of the Kansas, the linear regime and ensuing crossover appear
as a steep rise followed by a drop and then another rise during all of which
the local Hack exponent moves well below 1/2.

It is after these small scale fluctuations that we would expect to find
Hack’s exponent. For the Kansas river data, we see the derivative gradually
climbs for all values of n before reaching the end of the intermediate regime
where the putative scaling breaks down altogether.

For the Kansas show in Figure 3.9(a), the dashed line represents h = 0.57,
our estimate of Hack’s exponent from simple regression on the mean-Hack
distribution of Figure 3.6(a). For the regression calculation, the intermediate
region was identified from the figure to be 107 < a < 1010 m2. We see from
the smoothed derivative in Figure 3.9(a) that the value h = 0.57 is not
precise. After the crossover from the linear region has been completed, we
observe a slow rise from h ' 0.54 to h ' 0.63. Thus, the local Hack exponent
h(a) gradually climbs above h = 0.57 rather than fluctuate around it.
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A similar slow change in h(a) is observed for the Mississippi data. We see
in Figure 3.9(b) a gradual rise and then fall in h(a). The dashed line here
represents h = 0.55, the value of which was determined from Figure 3.6(b)
using regression on the range 109 < a < 1011.5 m2. The range of h(a)
is roughly [0.52, 0.58]. Again, while h = 0.55 approximates the derivative
throughout this intermediate range of Hack’s law, we cannot claim it to be
a precise value.

We observe the same drifts in h(a) in other datasets and for varying win-
dow size n of the running average. The results suggest that we cannot assign
specific Hack exponents to these river networks and are therefore unable to
even consider what might be an appropriate universality class. The value of
h obtained by regression analysis is clearly sensitive to the the range of a
used. Furthermore, these results indicate that we should maintain healthy
reservations about the exact values of other reported exponents.

3.10 Deviations at large scales

We turn now to deviations from Hack’s law at large scales. As we move
beyond the intermediate region of approximate scaling, fluctuations in h(a)
begin to grow rapidly. This is clear on inspection of the derivatives of Hack’s
law in Figures 3.9(a) and 3.9(b). There are two main factors conspiring to
drive these fluctuations up. The first is that the number of samples of sub-
basins with area a decays algebraically in a. This is just the observation that
P (a) ∝ a−τ as per equation (3.11). The second factor is that fluctuations in
l and a are on the order of the parameters themselves. This follows from our
generalization of Hack’s law which shows, for example, that the moments 〈lq〉
of P (l | a) grow like aqh. Thus, the standard deviation grows like the mean:
σ(l) = (〈l2〉 − 〈l〉2)1/2 ∝ ah ∝ 〈l〉.

3.10.1 Stream ordering and Horton’s laws

So as to understand these large scale deviations from Hack’s law, we need to
examine network structure in depth. One way to do this is by using Horton-
Strahler stream ordering [58, 128] and a generalization of the well-known
Horton’s laws [31, 33, 58, 101, 116]. This will naturally allow us to deal with
the discrete nature of a network that is most apparent at large scales.

Stream ordering discretizes a network into a set of stream segments (or,
equivalently, a set of nested basins) by an iterative pruning. Source streams
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(i.e., those without tributaries) are designated as stream segments of order
ω = 1. These are removed from the network and the new source streams are
then labelled as order ω = 2 stream segments. The process is repeated until
a single stream segment of order ω = Ω is left and the basin itself is defined
to be of order Ω.

Natural metrics for an ordered river network are nω, the number of order
ω stream segments (or basins), āω, the average area of order ω basins, l̄ω, the

average main stream length of order ω basins, and l̄
(s)

ω , the average length of
order ω stream segments. Horton’s laws state that these quantities change
regularly from order to order, i.e.,

nω

nω+1
= Rn and

X̄ω+1

X̄ω

= RX , (3.30)

where X = a, l or l(s). Note that all ratios are defined to be greater than
unity since areas and lengths increase but number decreases. Also, there
are only two independent ratios since Ra ≡ Rn and Rl ≡ Rl(s) [31]. Horton’s
laws mean that stream-order quantities change exponentially with order. For
example, (3.30) gives that lω ∝ (Rl)

ω.

3.10.2 Discrete version of Hack’s law

Returning to Hack’s law, we examine its large scale fluctuations with the
help of stream ordering. We are interested in the size of these fluctuations
and also how they might correlate with the overall shape of a basin. First,
we note that the structure of the network at large scales is explicitly discrete.
Figure 3.10 demonstrates this by plotting the distribution of (a, l) without
the usual logarithmic transformation. Hack’s law is seen to be composed of
linear fragments. As explained above in Figure 3.8, areas and length increase
in proportion to each other along streams where no major tributaries enter.
As soon as a stream does combine with a comparable one, a jump in drainage
area occurs. Thus, we see in Figure 3.10 isolated linear segments which upon
ending at a point (a1, l1) begin again at (a1 + a2, l1), i.e., the main stream
length stays the same but the area is shifted.

We consider a stream ordering version of Hack’s law given by the points
(āω, l̄ω). The scaling of these data points is equivalent to scaling in the
usual Hack’s law. Also, given Horton’s laws, it follows that h = ln Rl/ lnRn

(using Ra ≡ Rn). Along the lines of the derivative we introduced to study
intermediate scale fluctuations in equation (3.29), we have here an order-
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Figure 3.10: Hack distribution for the Mississippi plotted in linear space. The area
units a is 1012 m2 and length l is 106 m. The discreteness of the basin structure is
clearly indicated by the isolated, linear fragments. The inset is a blow-up of the
box on the main graph.

based difference:

hω,ω−1 =
log l̄ω/l̄ω−1

log āω/āω−1
. (3.31)

We can further extend this definition to differences between non-adjacent
orders:

hω,ω′ =
log l̄ω/l̄ω′

log āω/āω′

. (3.32)

This type of difference, where ω′ < ω, may be best thought of as a measure
of trends rather than an approximate discrete derivative.

Using these discrete differences, we examine two features of the order-
based versions of Hack’s law. First we consider correlations between large
scale deviations within an individual basin and second, correlations between
overall deviations and basin shape. For the latter, we will also consider
deviations as they move back into the intermediate scale. This will help to
explain the gradual deviations from scaling we have observed at intermediate
scales.
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Since deviations at large scales are reflective of only a few basins, we
require an ensemble of basins to provide sufficient statistics. As an example
of such an ensemble, we take the set of order Ω = 7 basins of the Mississippi
basin. For the dataset used here where the overall basin itself is of order
Ω = 11, we have 104 order Ω = 7 sub-basins. The Horton averages for these
basins are ā7 ' 16600 km2, l̄7 ' 350 km, and L̄7 ' 210 km.
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Figure 3.11: Differences of the stream order-based version of Hack’s law for 104
order Ω = 7 basins of the Mississippi (compare the continous versions given in
Figure 3.9) The plots are overlaid to give a sense of the increase in fluctuations of
the local Hack exponent hω,ω−1 with increasing order ω. The clusters correspond
to ω = 1, 2, . . . , 7, moving across from left to right.

For each basin, we first calculate the Horton averages (āω, l̄ω). We then
compute hω,ω−1, the Hack difference given in equation (3.31). To give a rough
picture of what is observed, Figure 3.11 shows a scatter plot of hω,ω−1 for
all order Ω = 7 basins. Note the increase in fluctuations with increasing ω.
This increase is qualitatively consistent with the smooth versions found in the
single basin examples of Figures 3.9(a) and 3.9(b). In part, less self-averaging
for larger ω results in a greater spread in this discrete derivative. However,
as we will show, these fluctuations are also correlated with fluctuations in
basin shape.
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3.10.3 Effect of basin shape on Hack’s law

In what follows, we extract two statistical measures of correlations between
deviations in Hack’s law and overall basin shape. These are r, the standard
linear correlation coefficient and rs, the Spearman rank-order correlation
coefficient [81, 104, 123]. For N observations of data pairs (ui, vi), r is defined
to be

r =

∑N
i=1(ui − µu)(vi − µv)

∑N
i=1(xi − µu)2

∑N
i=1(yi − µv)2

=
C(u, v)

σuσv

, (3.33)

where C(u, v) is the covariance of the ui’s and vi’s, µu and µv their means,
and σu and σv their standard deviations. The value of Spearman’s rs is de-
termined in the same way but for the ui and vi replaced by their ranks. From
rs, we determine a two-sided significance ps via Student’s t-distribution [104].

We define κ, a measure of basin aspect ratio, as

κ = L2/a. (3.34)

Long and narrow basins correspond to κ � 1 while for short and wide basins,
we have κ � 1

We now examine the discrete derivatives of Hack’s law in more detail.
In order to discern correlations between large scale fluctuations within in-
dividual basins, we specifically look at the last two differences in a basin:
hΩ,Ω−1 and hΩ−1,Ω−2. For each of the Mississippi’s 104 order Ω = 7 basins,
these values are plotted against each other in Figure 3.12. Both our cor-
relation measurements strongly suggest these differences are uncorrelated.
The linear correlation coefficient is r = −0.06 ' 0 and, similarly, we have
rs = −0.08 ' 0. The significance ps = 0.43 implies that the null hypothesis
of uncorrelated data cannot be rejected.

Thus, for Hack’s law in an individual basin, large scale fluctuations are
seen to be uncorrelated. However, correlations between these fluctuations
and other factors may still exist. This leads us to our second test which
concerns the relationship between trends in Hack’s law and overall basin
shape.

Figure 3.13 shows a comparison of the aspect ratio κ and h7,5 for the
order Ω = 7 basins of the Mississippi. The measured correlation coefficients
are r = 0.50 and rs = 0.53, giving a significance of ps < 10−8. Furthermore,
we find the differences h7,6 (r = 0.34, rs = 0.39 and ps < 10−4) and h6,5

(r = 0.35, rs = 0.34 and ps < 10−3) are individually correlated with basin
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Figure 3.12: A comparison of the stream order Hack derivatives hΩ,Ω−1 and
hΩ−1,Ω−2 for each of the 104 order Ω = 7 basins of the Mississippi. The lin-
ear correlation coefficient is r = −0.06 and the Spearman correlation coefficient is
rs = −0.08. The latter has probability ps = 0.43 indicating there are no significant
correlations.

shape. We observe this correlation between basin shape and trends in Hack’s
law at large scales, namely hΩ,Ω−1, hΩ−1,Ω−2 and hΩ,Ω−2, repeatedly in our
other data sets. In some cases, correlations extend further to hΩ−2,Ω−3.

Since the area ratio Ra is typically in the range 4–5, Hack’s law is affected
by boundary conditions set by the geometry of the overall basin down to sub-
basins one to two orders of magnitude smaller in area than the overall basin.
These deviations are present regardless of the absolute size of the overall
basin. Furthermore, the origin of the basin boundaries being geologic or
chance or both is irrelevant—large scale deviations will still occur. However,
it is reasonable to suggest that particularly strong deviations are more likely
the result of geologic structure rather than simple fluctuations.

3.11 Conclusion

Hack’s law is a central relation in the study of river networks and branching
networks in general. We have shown Hack’s law to have a more complicated
structure than is typically given attention. The starting generalization is to
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Figure 3.13: Correlation between trends in Hack’s law and the aspect ratio of
a basin as estimated by κ = L2/a. The data is for the order Ω = 7 basins of
the Mississippi and the specific trend is h7,5. The correlation measurements give
r = 0.50, rs = 0.53 and ps < 10−8.

consider fluctuations around scaling. Using the directed, random network
model, a form for the Hack distribution underlying Hack’s law may be pos-
tulated and reasonable agreement with real networks is observed. Questions
of the validity of the distribution aside, the Hack mean coefficient θ and the
Hack standard deviation coefficient η should be standard measurements be-
cause they provide further points of comparison between theory and other
basins.

With the idealized Hack distribution proposed, we may begin to under-
stand deviations from its form. As with any scaling law pertaining to a
physical system, cutoffs in scaling must exist and need to be understood.
For small scales, we have identified the presence of linear sub-basins as the
source of an initial linear relation between area and stream length. At large
scales, statistical fluctuations and geologic boundaries give rise to basins
whose overall shape produces deviations in Hack’s laws. Both deviations ex-
tend over a considerable range of areas as do the crossovers which link them
to the region of intermediate scales, particularly the crossover from small
scales.

Finally, by focusing in detail on a few large-scale examples networks,
we have found evidence that river networks do not belong to well defined
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universality classes. The relationship between basin area and stream length
may be approximately, and in some cases very well, described by scaling laws
but not exactly so. The gradual drift in exponents we observe suggests a more
complicated picture, one where subtle correlations between basin shape and
geologic features are intrinsic to river network structure.
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CHAPTER 4

Fluctuations in the size and
number of network components

Abstract. The structure of a river network may be seen as a discrete set
of nested sub-networks built out of individual stream segments. These net-
work components are assigned an integral stream order via a hierarchical
and discrete ordering method. Exponential relationships, known as Horton’s
laws, between stream order and ensemble-averaged quantities pertaining to
network components are observed. We extend these observations to incorpo-
rate fluctuations and all higher moments by developing functional relation-
ships between distributions. The relationships determined are drawn from a
combination of theoretical analysis, analysis of real river networks including
the Mississippi, Amazon and Nile, and numerical simulations on a model
of directed, random networks. Underlying distributions of stream segment
lengths are identified as exponential. Combinations of these distributions
form single-humped distributions with exponential tails, the sums of which
are in turn shown to give power law distributions of stream lengths. Distri-
butions of basin area and stream segment frequency are also addressed. The
calculations identify a single length-scale as a measure of size fluctuations in
network components. This article is the second in a series of three addressing
the geometry of river networks.

4.1 Introduction

Branching networks are an important category of all networks with river
networks being a paradigmatic example. Probably as much as any other

97
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natural phenomena, river networks are a rich source of scaling laws [35, 108,
110]. Central quantities such as drainage basin area and stream lengths are
reported to closely obey power-law statistics [1, 31, 35, 54, 78, 87, 108, 110].
The origin of this scaling has been attributed to a variety of mechanisms
including, among others: principles of optimality [110, 130], self-organized
criticality [109], invasion percolation [124], and random fluctuations [35, 82,
84, 112]. One of the difficulties in establishing any theory is that the reported
values of scaling exponents show some variation [1, 86, 87].

With this variation in mind, we have in [32] extensively examined Hack’s
law, the scaling relationship between basin shape and stream length. Such
scaling laws are inherently broad-brushed in their descriptive content. In an
effort to further improve comparisons between theory and data and, more
importantly, between networks themselves, we consider here a generalization
of Horton’s laws [58, 116]. Defined fully in the following section, Horton’s
laws describe how average values of network parameters change with a certain
discrete renormalization of the network. The introduction of these laws by
Horton may be seen as one of many examples that presaged the theory of
fractal geometry [83]. In essence, they express the relative frequency and size
of network components such as stream segments and drainage basins.

Here, we extend Horton’s laws to functional relationships between prob-
ability distributions rather than simply average values. The recent work of
Peckham and Gupta was the first to address this natural generalization of
Horton’s laws [101]. Our work agrees with their findings but goes further
to characterize the distributions and develop theoretical links between the
distributions of several different parameters. We also present empirical stud-
ies that reveal underlying scaling functions with a focus on fluctuations and
further consider deviations due to finite-size effects.

We examine continent-scale networks: the Mississippi, Amazon, Congo,
Nile and Kansas river basins. As in [32], we also examine Scheidegger’s model
of directed, random networks [112]. Both real and model networks provide
important tests and motivations for our generalizations of Horton’s laws.

We begin with definitions of stream ordering and Horton’s laws. There-
after, the paper is divided into two main sections. In Section 4.3, we first
sketch the theoretical generalization of Horton’s laws. Estimates of the Hor-
ton ratios are carried out in Section 4.4 and these provide basic parameters
of the generalized laws. Empirical evidence from real continent-scale net-
works is then provided along with data from Scheidegger’s random network
model in Section 4.5. In Section 4.6 we derive the higher order moments for
stream length distributions and in Section 4.7, we consider deviations from
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Horton’s laws for large basins. In the Appendix A.1, we expand on some of
the connections outlined in Section 4.5, presenting a number of mathematical
considerations on these generalized Horton distributions.

This paper is the second in a series of three on the geometry of river
networks. In the first [32] we address issues of scaling and universality and
provide further motivation for our general investigation. In the third article
of the series [34] we extend the work of the present paper by examining how
the detailed architecture of river networks, i.e., how network components fit
together.

4.2 Stream ordering and Horton’s laws

Stream ordering was first introduced by Horton in an effort to quantify the
features of river networks [58]. The method was later improved by Strahler to
give the present technique of Horton-Strahler stream ordering [128]. Stream
ordering is a method applicable to any field where branching, hierarchical
networks are important. Indeed, much use of stream ordering has been made
outside of the context of river networks, a good example being the study of
venous and arterial blood networks in biology [2, 42, 69, 70, 71, 147, 156, 157].
We describe two conceptions of the method and then discuss empirical laws
defined with in the context of stream ordering.

A network’s constituent stream segments are ordered by an iterative prun-
ing. An example of stream ordering for the Mississippi basin is shown in
Figure 4.1. A source stream is defined as a section of stream that runs from
a channel head to a junction with another stream (for an arboreal analogy,
think of the leaves of a tree). These source streams are classified as the first
order stream segments of the network. Next, remove these source streams
and identify the new source streams of the remaining network. These are
the second order stream segments. The process is repeated until one stream
segment is left of order Ω. The order of the network is then defined to be Ω.

Once stream ordering on a network has been done, a number of natural
quantities arise. These include nω, the number of basins (or equivalently
stream segments) for a given order ω; 〈lω〉, the average main stream length;

〈l (s)
ω 〉, the average stream segment length; 〈aω〉, the average basin area; and

the variation in these numbers from order to order. Horton [58] and later
Schumm [116] observed that the following ratios are generally independent
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Figure 4.1: Stream segments for ω = 8 up to ω = Ω = 11 for the Mississippi
River. The spherical coordinates of latitude and longitude are used and the scale
corresponds to roughly 2000 km along each axis.

of order ω:

nω

nω+1
= Rn,

〈l〉ω+1

〈l〉ω
= Rl, and

〈a〉ω+1

〈a〉ω
= Ra. (4.1)

Since the main stream length averages l̄ω are combinations of stream segment
lengths l̄ω =

∑ω
ν=1 l̄

(s)
ω we have that the Horton ratio for stream segment

lengths Rl(s) is equivalent to Rl. Because our theory will start with the
distributions of l(s), we will generally use the ratio Rl(s) in place of Rl.

Horton’s laws have remained something of a mystery in geomorphology—
the study of earth surface processes and form—due to their apparent robust-
ness and hence perceived lack of physical (or geological) content. However,
statements that Horton’s laws are “statistically inevitable” [72], while possi-
bly true, have not yet been based on reasonable assumptions [35]. Further-
more, many other scaling laws can be shown to follow in part from Horton’s
laws [31]. Thus, Horton’s laws being without content would imply the same
is true for those scaling laws that follow from them. Other sufficient as-
sumptions include uniform drainage density (i.e., networks are space-filling)
and self-affinity of single channels. The latter can be expressed as the rela-
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tion [74, 87, 141, 143]

l ∝ Ld
‖, (4.2)

where L‖ is the longitudinal diameter of a basin. Scaling relations may be
derived and the set of relevant scaling exponents can be reduced to just two:
d as given above and the ratio ln Rl(s)/ ln Rn [31]. Note that one obtains
Ra ≡ Rn so that only the two Horton ratios Rn and Rl(s) are independent.
Horton ratios are thus of central importance in the full theory of scaling for
river networks.

4.3 Postulated form of Horton distributions

Horton’s laws relate quantities which are indexed by a discrete set of numbers,
namely the stream orders. They also algebraically relate mean quantities
such as āω. Hence we may consider a generalization to functional relation-
ships between probability distributions. In other words, for stream lengths
and drainage areas we can explore the relationships between probability dis-
tributions defined for each order.

Furthermore, as we have noted, Horton’s laws can be used to derive power
laws of continuous variables such as the probability distributions of drainage
area a and main stream length l [24, 31, 87]:

P (a) ∝ a−τ and P (l) ∝ l−γ. (4.3)

These derivations necessarily only give discrete points of power laws. In other
words, the derivations give points as functions of the discrete stream order ω
and are uniformly spaced logarithmically and we interpolate the power law
from there. The distributions for stream lengths and areas must therefore
have structures that when combined across orders produce smooth power
laws.

For the example of the stream segment length l
(s)
ω , Horton’s laws state

that the mean l̄
(s)

ω grows by a factor of Rl(s) with each integer step in order

ω. In considering P (l
(s)
ω , ω), the underlying probability distribution function

for l
(s)
ω , we postulate that Horton’s laws apply for every moment of the dis-

tribution and not just the mean. This generalization of Horton’s laws may
be encapsulated in a statement about the distribution P (l

(s)
ω , ω) as

P (l (s)
ω , ω) = cl(s)(RnRl(s))

−ωFl(s)(l
(s)
ω R−ω

l(s)
). (4.4)
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The factor of (Rn)−ω indicates the that
∫∞

l(s)=0
dl(s)P (l

(s)
ω , ω) ∝ (Rn)−ω, i.e.,

the frequency of stream segments of order ω decays according to Horton’s
law of stream number given in equation (4.1). Similarly, for lω, aω and nΩ,ω,
we write

P (lω, ω) = cl(RnRl(s))
−ωFl(lωR−ω

l(s)
), (4.5)

P (aω, ω) = ca(R
2
n)−ωFa(aωR−ω

n ), (4.6)

and

P (nΩ,ω) = cn(Rn)Ω−ωFn(nΩ,ωR−ω
n ), (4.7)

where constants cl(s), cl, ca and cn are appropriate normalizations. We have

used the subscripted versions of the lengths and areas, l
(s)
ω , lω, and aω, to

reinforce that these parameters are for points at the outlets of order ω basins
only. The quantity nΩ,ω is the number of streams of order ω within a basin
of order Ω. This will help with some notational issues later on. The form
of the distribution functions Fl(s), Fl, Fa and Fn and their interrelationships
become the focus of our investigations. Since scaling is inherent in each of
these postulated generalizations of Horton’s laws, we will often refer to these
distribution functions as scaling functions.

We further postulate that distributions of stream segment lengths are
best approximated by exponential distributions. Empirical evidence for this
will be provided later on in Section 4.5. The normalized scaling function
Fl(s)(u) of equation (4.4) then has the form

Fl(s)(u) =
1

ξ
e−u/ξ = Fl(s)(u; ξ), (4.8)

where we have introduced a new length scale ξ and stated its appearance with
the notation Fl(s)(u; ξ). The value of ξ is potentially network dependent. As
we will show, distributions of main stream lengths, areas and stream number
are all dependent on ξ and this is the only additional parameter necessary
for their description. Note that ξ is both the mean and standard deviation
of Fl(s)(u; ξ), i.e., for exponential distributions, fluctuations of a variable are
on the order of its mean value. We may therefore think of ξ as a fluctuation
length scale. Note that the presence of exponential distributions indicates
a randomness in the physical distribution of streams themselves and this is
largely the topic of our third paper [34].
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Since main stream lengths are combinations of stream segment lengths,
i.e. lω =

∑ω
i=1 l

(s)
ω , we have that the distributions of main stream lengths

of order ω basins are approximated by convolutions of the stream segment
length distributions. For this step, it is more appropriate to use conditional
probabilities such as P (l

(s)
ω |ω) where the basin order ω is taken to be fixed.

We thus write

P (lω|ω) = P (l(s)1|1) ∗ P (l(s)2|2) ∗ · · ·P (l (s)
ω |ω). (4.9)

where ∗ denotes convolution. Details of the form obtained are given in Ap-
pendix A.1.1.

The next step takes us to the power law distribution for main stream
lengths. Summing over all stream orders and integrating over u = lω we
have

P (l) '
∞
∑

ω=1

∫ ∞

u=l

duP (u, ω), (4.10)

where we have returned to the joint probability for this calculation. The
integral over u is replaced by a sum when networks are considered on discrete
lattices. Note that the probability of finding a main stream of length l is
independent of any sort of stream ordering since it is defined on an unordered
network. The details of this calculation may be found Appendix A.1.2 where
it is shown that a power law P (l) ∝ l−γ follows from the deduced form of
the P (lω, ω) with γ = ln Rn/ lnRl(s) .

4.4 Estimation of Horton ratios

We now examine the usual Horton’s laws in order to estimate the Horton
ratios. These ratios are seen as intrinsic parameters in the probability dis-
tribution functions given above in equations (4.4), (4.5), (4.6) and (4.7).

Figure 4.2(a) shows the stream order averages of l(s), l, a and n for the
Mississippi basin. Deviations from exponential trends of Horton’s laws are ev-
ident and indicated by deviations from straight lines on the semi-logarithmic
axis. Such deviations are to be expected for the smallest and largest orders
within a basin [31, 34]. For the smallest orders, the scale of the grid used
becomes an issue but even with infinite resolution, the scaling of lengths,
areas and number for low orders cannot all hold at the same time [31]. For
large orders, the decrease in sample space contributes to these fluctuations
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ω range Rn Ra Rl Rl(s) Ra/Rn Rl/Rl(s)

[2, 3] 5.27 5.26 2.48 2.30 1.00 1.07
[2, 5] 4.86 4.96 2.42 2.31 1.02 1.05
[2, 7] 4.77 4.88 2.40 2.31 1.02 1.04
[3, 4] 4.72 4.91 2.41 2.34 1.04 1.03
[3, 6] 4.70 4.83 2.40 2.35 1.03 1.03
[3, 8] 4.60 4.79 2.38 2.34 1.04 1.02
[4, 6] 4.69 4.81 2.40 2.36 1.02 1.02
[4, 8] 4.57 4.77 2.38 2.34 1.05 1.01
[5, 7] 4.68 4.83 2.36 2.29 1.03 1.03
[6, 7] 4.63 4.76 2.30 2.16 1.03 1.07
[7, 8] 4.16 4.67 2.41 2.56 1.12 0.94

mean µ 4.69 4.85 2.40 2.33 1.04 1.03
std dev σ 0.21 0.13 0.04 0.07 0.03 0.03

σ/µ 0.045 0.027 0.015 0.031 0.024 0.027

Table 4.1: Horton ratios for the Mississippi River. For each range of orders (ω1, ω2),
estimates of the ratios are obtained via simple regression analysis. (See Table D.1
for the full range). For each quantity, a mean µ, standard deviation σ and nor-
malized deviation σ/µ are calculated. All ranges with 2 ≤ ω1 < ω2 ≤ 8 are used
in these estimates but not all are shown The values obtained for Rl are especially
robust while some variation is observed for the estimates of Rn and Ra. Good
agreement is observed between the ratios Rn and Ra and also between Rl and
Rl(s) . The Misssissippi river network was extracted from a topography dataset
composed of digital elevations models obtained from the United States Geological
Survey and are available on the Internet at www.usgs.gov. The dataset is deci-
mated so as to have horizontal resolution of approximately 1000 meters leading to
an order Ω = 11 network.
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ω range Rn Ra Rl Rl(s) Ra/Rn Rl/Rl(s)

[2, 3] 5.05 4.69 2.10 1.65 0.93 1.28
[2, 5] 4.65 4.64 2.11 1.92 1.00 1.10
[2, 7] 4.54 4.63 2.16 2.11 1.02 1.03
[3, 4] 4.54 4.73 2.10 2.01 1.04 1.05
[3, 6] 4.51 4.62 2.15 2.15 1.02 1.00
[3, 8] 4.44 4.55 2.19 2.23 1.02 0.98
[4, 6] 4.52 4.59 2.18 2.24 1.02 0.97
[4, 8] 4.42 4.51 2.21 2.27 1.02 0.97
[5, 7] 4.39 4.62 2.25 2.39 1.05 0.94
[6, 7] 4.19 4.55 2.26 2.40 1.09 0.94
[7, 8] 4.50 4.21 2.15 2.12 0.94 1.02

mean µ 4.51 4.58 2.17 2.15 1.01 1.02
std dev σ 0.17 0.12 0.05 0.19 0.03 0.08

σ/µ 0.038 0.026 0.024 0.089 0.034 0.078

Table 4.2: Horton ratios for the Amazon. Details are as per Table 4.1. (Again,
not all data is shown but is recorded later in Table D.3). The topography dataset
used for the Amazon was obtained from the website of the National Imagery and
Mapping Agency (www.nima.mil). The dataset has a horizontal resolution of
approximately 1000 meters yielding and order Ω = 11 network for the Amazon.
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Figure 4.2: Horton’s laws for the order Ω = 11 Mississippi river basin network.
For (a), the ordinate axis is logarithmic (base 10) representing number for stream
number nω (circles), km2 for area āω (squares), and km for both main stream

length l̄ω (triangles) and stream segment length l̄
(s)

ω (diamonds). Note the good

agreement between l̄ω and l̄
(s)

ω . In (b), the stream number data nω (circles) has
been inverted from that in (a), i.e., the plot is of n−1

ω . This is compared with the
dimensionless āω/āΩ (squares) showing good support for the prediction the slopes
are equal, i.e., Ra ≡ Rn.

since the number of samples of order ω streams decays exponentially with
order as (Rn)Ω−ω. Furthermore, correlations with overall basin shape provide
another source of deviations [34]. Nevertheless, in our theoretical investiga-
tions below we will presume exact scaling. Note also that the equivalence of
Rn and Ra is supported by Figure 4.2(b) where the stream numbers nw have
been inverted for comparison. Similar agreement is found for the Amazon
and Nile as shown in Tables 4.1, 4.2, and 4.3 which we now discuss.

Table 4.1 shows the results of regression on the Mississippi data for various
ranges of stream orders for stream number, area and lengths. Tables 4.2
and 4.3 show the same results carried out for the Amazon and Nile. Each
table presents estimates of the four ratios Rn, Ra, Rl and Rl(s). Also included
are the comparisons Ra/Rn and Rl/Rl(s), both of which we expect to be close
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ω range Rn Ra Rl Rl(s) Ra/Rn Rl/Rl(s)

[2, 3] 4.78 4.71 2.47 2.08 0.99 1.19
[2, 5] 4.55 4.58 2.32 2.12 1.01 1.10
[2, 7] 4.42 4.53 2.24 2.10 1.02 1.07
[3, 5] 4.45 4.52 2.26 2.14 1.01 1.06
[3, 7] 4.35 4.49 2.20 2.10 1.03 1.05
[4, 6] 4.38 4.54 2.22 2.18 1.03 1.02
[5, 6] 4.38 4.62 2.22 2.21 1.06 1.00
[6, 7] 4.08 4.27 2.05 1.83 1.05 1.12

mean µ 4.42 4.53 2.25 2.10 1.02 1.07
std dev σ 0.17 0.10 0.10 0.09 0.02 0.05

σ/µ 0.038 0.023 0.045 0.042 0.019 0.045

Table 4.3: Horton ratios for the Nile. Details are as per Table 4.3. (See Table D.5
for all data). Here 2 ≤ ω1 < ω2 < 7. The data for the Nile comes from the
United States Geological Survey’s 30 arc second Hydro1K dataset, avaliable on
the Internet at edcftp.cr.usgs.gov, which has a grid spacing of approximately
1000 meters. At this resolution, the Nile is an order Ω = 10 basin.

to unity. For each quantity, we calculate the mean µ, standard deviation σ
and normalized deviation σ/µ.

Note the variation of exponents with choice of order range. This is the
largest source of error in the calculation of the Horton ratios. Therefore,
rather than taking a single range of stream orders for the regression, we
examine a collection of ranges. Also, the deviations for high and low orders
observed in Figures 4.2(a) and 4.2(b) do of course affect measurements of the
Horton ratios. In all cases, we have avoided using data for the smallest and
largest orders.

For the three example networks given here, the statements Ra ≡ Rn and
Rl ≡ Rl(s) are well supported. The majority of ranges give Rn/Ra and Rl/Rl(s)

very close to unity. The averages are also close to one and are different from
unity mostly by within 1.0 and uniformly by within 1.5 standard deviations.

The normalized deviations, ie., σ/µ, for the four ratios are all below 0.05.
No systematic ordering of the σ/µ is observed. Of all the data, the values
for Rl in the case of the Mississippi are the most notably uniform having
σ/µ = 0.015. Throughout there is a slight trend for regression on lower
orders to overestimate and on higher orders to underestimate the average
ratios, while reasonable consistency is found at intermediate orders.
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Figure 4.3: Plot (a) shows an example distribution of stream segment lengths,

P (l
(s)
ω , ω), for the Mississippi for order ω = 4. The lengths here are in kilometers.

The semi-logarithmic axes indicate the distribution is well approximated by an
exponential. The value of the length scale ξ (see equation (4.8)) is estimated to be
approximately 800 meters. Rescaled versions of the same stream segment length
distributions for ω = 3 (circles), ω = 4 (squares), ω = 5 (triangles), and ω = 6
(diamonds), are shown in (b). The rescaling is done according to equation (4.4).
The values of the Horton ratios used are Rn = 4.69 and Rl(s) = 2.33 as determined
from Table 4.1

Thus, overall the ranges chosen in the tables give a reasonably even set of
estimates of the Horton ratios and we will use these averages as our estimates
of the ratios.

4.5 Empirical evidence for Horton distribu-

tions

4.5.1 Stream segment length distributions

We now present Horton distributions for the Mississippi, Amazon, and Nile
river basins as well as the Scheidegger model. Scheidegger networks may
be thought of as collections of random-walker streams and are fully defined



4.5 Empirical evidence for Horton distributions 109

in [32] and extensively studied in [34]. The forms of all distributions are
observed to be the same in the real data and in the model.

The first distribution is shown in Figure 4.3(a). This is the probabil-
ity density function of l(s)4, fourth order stream segment lengths, for the
Mississippi River. Distributions for different orders can be rescaled to show
satisfactory agreement. This is done using the postulated Horton distribution
of stream segment lengths given in equation (4.4). The rescaling is shown
in Figure 4.3(b) and is for orders ω = 3, . . . , 6. Note the effect of the expo-
nential decrease in number of samples with order is evident for ω = 6 since
P (l(s)6) is considerably scattered. Nevertheless, the figure shows the form
of these distributions to be most closely approximated by exponentials. We
observe similar exponential distributions for the Amazon, the Nile and the
Scheidegger model. The fluctuation length scale ξ is found to be approxi-
mately 800 meters for the Mississippi, 1600 meters for the Amazon and 1200
meters for the Nile.

Since ξ is based on the definition of stream ordering, comparisons of ξ
are only sensible for networks that are measured on topographies with the
same resolution. The above values of ξ are approximate and our confidence
in them would be improved with higher resolution data. Nevertheless they
do suggest that fluctuations in network structure increase as we move from
the Mississippi through to the Nile and then the Amazon.

4.5.2 Main stream segment length distributions

The distributions of ω = 4 main stream lengths for the Amazon River is
shown in Figure 4.4(a). Since main stream lengths are sums of stream seg-
ment lengths, their distribution has a single peak away from the origin. How-
ever, these distributions will not tend towards a Gaussian because the individ-
ual stream length distributions do not satisfy the requirements of the central
limit theorem [39]. This is because the moments of the stream segment length
distributions grow exponentially with stream order. As the semi-logarithmic
axes indicate, the tail may be reasonably well (but not exactly) modeled by
exponentials. There is some variation in the distribution tails from region to
region. For example, corresponding distributions for the Mississippi data do
exhibit tails that are closer to exponentials. However, for the present work
where we are attempting to characterize the basic forms of the Horton dis-
tributions, we consider these deviations to be of a higher order nature and
belonging to the realm of further research.

In accord with equation (4.5), Figure 4.4(b) shows the rescaling of the
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Figure 4.4: Plot (a) shows an example distribution for order ω = 5 main stream
lengths (measured in km) for the Amazon. The distribution is unimodal with what
is a reasonable approximation of an exponential tail. In (b), distributions of main
stream length for for ω = 3 (circles), ω = 4 (squares), ω = 5 (triangles), and ω = 6
(diamonds), are rescaled according to equation (4.5). The values of the Horton
ratios used here are Rn = 4.51 and Rl(s) = 2.17, taken from Table 4.2.

main stream length distributions for ω = 3, . . . , 6. The ratios used, Rn =
4.49 and Rl = 2.19(' Rl(s) = 2.17) are taken from Table 4.2. Given the
scatter of the distributions, it is unreasonable to perform minimization tech-
niques on the rescaled data itself in order to estimate Rn and Rl. This is
best done by examining means, as we have done, and higher order moments
which we discuss below. Furthermore, varying Rn and Rl from the above
values by, say, ±0.05 does not greatly distort the visual quality of the “data
collapse.”

Similar results for the Scheidegger model are shown in Figure 4.5. The
Scheidegger model may be thought of as a network defined on a triangu-
lar lattice where at each lattice site one of two directions is chosen as the
stream path [32, 34]. Figure 4.5(a) gives a single example distribution for
main stream lengths of order ω = 6 basins. The tail is exponential as per
the real world data. Figure 4.5(b) shows a collapse of main stream length
distributions for orders ω = 4 through 7. In contrast to the real data where
an overall basin order is fixed (Ω), there is no maximum basin order here.
The distributions in Figure 4.5(b) have an arbitrary normalization meaning
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Figure 4.5: Given in (a) is an example distribution of order ω = 6 main stream
lengths for the Scheidegger model. The same form is observed as for real networks
such as the Amazon (Figure 4.4). In the same way as Figure 4.4(b), (b) show
rescaled distributions of main stream length for for ω = 4 (circles), ω = 5 (squares),
ω = 6 (triangles), and ω = 7 (diamonds). Note that in (b), distributions are not
normalized with respect to a fixed basin order Ω and hence the vertical offset is
arbitrary. The values of the ratios used here are Rn ' 5.20 and Rl ' 3.00 [31].

the absolute values of the ordinate are also arbitrary. Otherwise, this is the
same collapse as given in equation (4.5). For the Scheidegger model, our
simulations yield Rn ' 5.20 and Rl(s) ' 3.00 [31]. For all distributions, we
observe similar functional forms for real networks and the Scheidegger model,
the only difference lying in parameters such as the Horton ratios.

4.5.3 Drainage area distributions

Figure 4.6 shows more Horton distributions, this time for drainage area as
calculated for the Nile river basin. In Figure 4.6, an example distribution
for ω = 4 sub-basins is presented. The distribution is similar in form to
those of main stream lengths of Figure 4.4, again showing a reasonably clear
exponential tail. Rescaled drainage area distributions for ω = 3, . . . , 6 are
presented in Figure 4.6(b). The rescaling now follows equation (4.6). Note
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Figure 4.6: The distribution of drainage areas for ω = 4 sub-basins of the Nile
are shown in (a). All areas are measured in km2. An exponential tail is observed
as per the distributions of stream segment length (Figure 4.3) and main stream
length (Figure 4.4). In (b), distributions of drainage area for for ω = 3 (circles),
ω = 4 (squares), ω = 5 (triangles), and ω = 6 (diamonds), are rescaled according
to equation (4.6). The rescaling uses the estimate Rn = 4.42 found in Table 4.3.

that if Rn and Ra were not equivalent, the rescaling would be of the form

P (aω, ω) = ca(RnRa)
−ωFa(aωR−ω

a ). (4.11)

Since we have asserted that Rn ≡ Ra, equation (4.11) reduces to equa-
tion (4.6). The Horton ratio used here is Rn = 4.42 which is in good agree-
ment with Ra = 4.53, the respective standard deviations being 0.17 and 0.10.
Both figures are taken from the data of Table 4.3.

4.5.4 Summing distributions to form power laws

As stated in Section 4.3, the Horton distributions of aω and lω must combine
to form power law distributions for a and l (see equations 4.3 and 4.10).
Figure 4.7 provides empirical support for this observation for the example
main stream lengths of the Mississippi network. The distributions for ω = 3,
4 and 5 main stream lengths are individually shown. Their combination
together with the distribution of l6 gives the reasonable approximation of
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Figure 4.7: Summation of main stream length distributions for the Mississippi.
Both axes are logarithmic,the unit of length is km and the vertical axis is prob-
ability density with units of km−1. Distributions of lω for orders ω = 3 (circles),
ω = 4 (squares), and ω = 5 (triangles), are shown. As expected, the distributions
sum together to give a power law tail (stars). The power law distribution (which
is vertically offset by an order of magnitude for clarity) is the summation of the
distributions below as well as the distribution for order ω = 6 main stream lengths.

a power law as shown. The area distributions combine in the same way.
Note that the distributions do not greatly overlap. Each point of the power
law is therefore the addition of significant contributions from only two or
three of the separate distributions. The challenge here then is to understand
how rescaled versions of Fl, being the basic form of the P (lω, ω), fit together
in such a clean fashion. The details of this connection are established in
Appendix A.1.2.

4.5.5 Connecting distributions of number and area

In considering the generalized Horton distributions for number and area, we
observe two main points: a calculation in the vein of what we are able to do
for main stream lengths is difficult; and, the Horton distributions for area
and number are equivalent.

In principle, Horton area distributions may be derived from stream seg-
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ment length distributions. This follows from an assumption of statistically
uniform drainage density which means that the typical drainage area drained
per unit length of any stream is invariant in space. Apart from the possibility
of changing with space which we will preclude by assumption, drainage den-
sity does naturally fluctuate as well [32]. Thus, we can write a ' ρ

∑

ω l
(s)
ω

where the sum is over all orders and all stream segments and ρ is the average
drainage density.

However, we need to know for an example basin, how many instances of
each stream segment occur as a function of order. For example, the number
of first order streams in an order Ω basins is nΩ,1. Given the distribution of
this number, we can then calculate the distribution of the total contribution
of drainage area due to first order streams. But the distributions of nΩ,ω are
not independent so we cannot proceed in this direction.

We could potentially use the typical number of order ω streams, (Rn)Ω−ω.
Then the distribution of total area drained due to order ω streams would
approach Gaussian because the individual distribution are identical and the
central limit theorem would apply. However, because the fluctuations in total
number of stream segments are so great, we lose too much information with
this approach. Indeed, the distribution of area drained by order ω stream
segments in a basin reflects variations in their number rather than length.
Again, we meet up with the problem of the numbers of distinct orders of
stream segment lengths being dependent.

One final way would be to use Tokunaga’s law [31, 102, 144, 145, 146].
Tokunaga’s law states that the number of order ν side branches along an
(absorbing) stream segment of order µ is given by

Tk = T1(Rl(s))
k+1. (4.12)

where k = µ − ν. The parameter T1 is the average number of side streams
having order ν = µ − 1 for every order µ absorbing stream. This gives a
picture of how a network fits together and may be seen to be equivalent
to Horton’s laws [31]. Now, even though we also understand the distribu-
tions underlying Tokunaga’s law [32], similar technical problems arise. On
descending into a network, we find the number of stream segments at each
level to be dependent on all of the above.

Nevertheless, we can understand the relationship between the distribu-
tions for area and number. What follows is a generalization of the finding
that Rn ≡ Ra. The postulated forms for these distributions were given in
equations (4.6) and (4.7). Consider nΩ,1, the number of first order streams
in an order Ω basin. Assuming that, on average, first order streams are
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Figure 4.8: Comparison of number and area distributions for the Scheidegger
model. Area is in terms of lattice units. In the inset plot, the raw distributions
shown are P (a6|6) (circles) and P (n6,1|6) (continuous line). The latter is the
probability of finding n6,1 source streams in an order ω = 6 basin. In the main
plot, the number distribution has been rescaled to be 1/4P (n6,1|6) as a function
of 4n6,1 and the area distribution is unrescaled (the symbols are the same as for
the inset plot). For the Scheidegger model, source streams occur at any site with
probability of 1/4, hence the rescaling by a factor of four.

distributed evenly throughout a network, then this number is simply pro-
portional to aΩ. As an example, Figure 4.8 shows data obtained for the
Scheidegger model. For the Scheidegger model, first order streams are ini-
tiated with a 1/4 probability when the flow at the two upstream sites is
randomly directed away, each with probability 1/2. Thus, for an area aΩ, we
expect and find nΩ,ω = aΩ/4.

For higher internal orders, we can apply a simple renormalization. Assum-
ing a system with exact scaling, the number of streams nΩ,ω is statistically
equivalent to nΩ−ω+1,1. Since the latter is proportional to aΩ−ω+1 we have
that

nΩ,ω ' ρωaΩ−ω+1 (4.13)

where the constant of proportionality is the density of order ω streams,
Clearly, this equivalence improves as number increases, i.e., the difference
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Figure 4.9: A comparison of moments calculated for main stream length distribu-
tions for the Mississippi River.

Ω − ω increases.

While we do not have exact forms for the area or number distributions,
we note that they are similar to the main stream length distributions. Since
source streams are linear basins with the width of a grid cell, the distribution
of a1 is the same as the distribution of l1 and l(s)1, a pure exponential. Hence,
nΩ,Ω−1 is also an exponential. For increasing ω, the distribution of aω becomes
single peaked with an exponential tail, qualitatively the same as the main
stream length distributions.

4.6 Higher order moments

Finally, we discuss the higher order moments for the generalized Horton
distributions. Figure 4.9 presents moments for distributions of main stream
lengths for the case of the Mississippi. These moments are calculated directly
from the main stream length distributions. A regular logarithmic spacing is
apparent in moments for orders ranging from 3 to 7.

To see whether or not this is expected, we detail a few small calculations
concerning moments starting from the exponential form of stream segment
lengths given in equation (4.8). As noted previously, for an exponential
distribution, Fl(s)(u) = ξ−1e−u/ξ, the mean is simply 〈u〉 = ξ. In general, the
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qth moment of an exponential distribution is

〈uq〉 =

∫ ∞

u=0

uq

ξ
e−u/ξdu

= ξq

∫ ∞

x=0

xqe−xdx = q!ξq. (4.14)

Assuming scaling holds exactly for across all orders, the above is precisely
〈(l(s)1)q〉. Note that 〈(l(s)1)q〉 = q!〈l(s)1〉q. Since the characteristic length of
order ω streams is (Rl(s))

ω−1, we therefore have
〈

(l (s)
ω )q

〉

= q!ξq(Rl(s))
(ω−1)q = q!

〈

l (s)
ω

〉q
. (4.15)

Since main stream lengths are sums of stream segment lengths, so are
their respective moments. Hence,

〈(lω)q〉 =
ω
∑

k=1

〈

(l(s)k)
q
〉

,

=
ω
∑

k=1

q!ξq(Rl(s))
(k−1)q,

= q!ξq

ω
∑

k=1

(Rl(s))
(k−1)q,

= q!ξq (Rl(s))
qω − 1

Rl(s) − 1
. (4.16)

We can now determine the log-space separation of moments of main stream
length. Using Stirling’s approximation [50] that lnn! ∼ (n+1/2) lnn−n we
have

ln 〈(lω)q〉 ∼ q [ξ + (Rl(s))
ω + ln q] + C, (4.17)

where C is a constant. The ln q term inside the square brackets in equa-
tion 4.17 creates small deviations from linearity for 1 ≤ ω ≤ 15. Thus, in
agreement with Figure 4.9, we expect approximately linear growth of mo-
ments in log-space.

4.7 Limitations on the predictive power of

Horton’s laws

In this last section, we briefly examine deviations from scaling within this
generalized picture of Horton’s laws. The basic question is given an approx-
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imate scaling for quantities measured at intermediate stream orders, what
can we say about the features of the overall basin?
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Figure 4.10: Comparing the generalized Horton length distribution rescaled to the
level of order Ω = 11 basins with the Congo River itself. The two distributions
are for orders ω = 3 (squares) and ω = 4 (circles) stream lengths and the Horton
ratio is estimated to be Rl = 2.39 [33]. The dashed line represents the mean of
these scaled up distributions while the solid line marks l̄11, the measured length
of the Congo at a 1000 meter resolution. The actual length is within a standard
deviation of the mean being around 50% of l̄11. Table 4.4 shows comparisons for
various river networks for both area and length data.

As noted in the previous section, all moments of the generalized Horton
distributions grow exponentially with order. Coupling this with the fact
that nω ∝ R−ω

n , i.e., the number of samples of order ω basins decreases
exponentially with ω, we observe that a basin’s a and l will potentially differ
greatly from values predicted by Horton’s laws.

To illustrate this, Figure 4.10 specifically shows the distributions P (l3)
and P (l4) scaled up to give P (l11) for the Congo river. The actual Congo’s
length measured at this 1000 meter resolution is represented by the solid line
and is around 57% of the distribution’s mean as indicated by the dashed line.
Nevertheless, we see that the measured length is within a standard deviation
of the predicted value.

In Table 4.4, we provide a comparison of predicted versus measured main
stream lengths and areas for the basins studied here. The mean for the scaled
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basin: lΩ l̄Ω σl l/l̄Ω σl/l̄Ω a āΩ σa a/āΩ σa/āΩ

Mississippi 4.92 11.10 5.60 0.44 0.51 2.74 7.55 5.58 0.36 0.74
Amazon 5.75 9.18 6.85 0.63 0.75 5.40 9.07 8.04 0.60 0.89
Nile 6.49 2.66 2.20 2.44 0.83 3.08 0.96 0.79 3.19 0.82
Congo 5.07 10.13 5.75 0.50 0.57 3.70 10.09 8.28 0.37 0.82
Kansas 1.07 2.37 1.74 0.45 0.73 0.14 0.49 0.42 0.28 0.86

Table 4.4: Comparison of predicted versus measured main stream lengths for large
scale river networks. The dimensions of all lengths and areas are 106 m and 1012

m2 respectively. Here, lΩ, is the actual main stream length of the basin, l̄Ω the
predicted mean value of lΩ, σl the predicted variance and σl/l̄Ω the normalized
deviation. The entries for the basin area data have corresponding definitions.

up distributions overestimates the actual values in all cases except for the
Nile. Also, apart from the Nile, all values are within a standard deviation
of the predicted mean. The coefficients of variation, σa/āΩ and σl/l̄Ω, all
indicate that fluctuations are on the order of the expected values of stream
lengths and areas.

Thus, we see that by using a probabilistic point of view, this generalized
notion of Horton’s laws provides a way of discerning the strength of deviations
about the expected mean. In general, stronger deviations would imply that
geologic conditions play a more significant role in setting the structure of the
network.

4.8 Conclusion

The objective of this work has been to explore the underlying distributions
of river network quantities defined with stream ordering. We have shown
that functional relationships generalize all cases of Horton’s laws. We have
identified the basic forms of the distributions for stream segment lengths (ex-
ponential) and main stream lengths (convolutions of exponentials) and shown
a link between number and area distributions. Data from the continent-scale
networks of the Mississippi, Amazon, and Nile river basins as well as from
Scheidegger’s model of directed random networks provide both agreement
with and inspiration for the generalizations of Horton’s laws. Finally, we
have identified a fluctuation length scale ξ which is a reinterpretation of
what was previously identified as only a mean value. We see the study of the
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generalized Horton distributions as integral to increasing our understanding
of river network structure. We also suggest that practical network analysis
be extended to measurements of distributions and the length scale ξ with the
aim of refining our ability to distinguish and compare network structure.

By taking account of fluctuations inherent in network scaling laws, we
are able to see how measuring Horton’s laws on low-order networks is un-
avoidably problematic. Moreover, as we have observed, the measurement of
the Horton ratios is in general a delicate operation suggesting that many
previous measurements are not without error.

The theoretical understanding of the growth and evolution of river net-
works requires a more thorough approach to measurement and a concurrent
improvement in the statistical description of river network geometry. The
present consideration of a generalization of Horton’s laws is a necessary step
in this process giving rise to stronger tests of both real and synthetic data.
In the following paper [34], we round out this expanded picture of network
structure by consdering the spatial distribution of network components.
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CHAPTER 5

Fluctuations in network
architecture

Abstract. River networks serve as a paradigmatic example of all branching
networks. Essential to understanding the overall structure of river networks
is a knowledge of their detailed architecture. Here we show that sub-branches
are distributed exponentially in size and that they are randomly distributed
in space, thereby completely characterizing the most basic level of river net-
work description. Specifically, an averaged view of network architecture is
first provided by a proposed self-similarity statement about the scaling of
drainage density, a local measure of stream concentration. This scaling of
drainage density is shown to imply Tokunaga’s law, a description of the scal-
ing of side branch abundance along a given stream, as well as a scaling law
for stream lengths. This establishes the scaling of the length scale associated
with drainage density as the basic signature of self-similarity in river net-
works. We then consider fluctuations in drainage density and consequently
the numbers of side branches. Data is analyzed for the Mississippi River
basin and a model of random directed networks. Numbers of side streams
are found to follow exponential distributions as are stream lengths and inter-
tributary distances along streams. Finally, we derive the joint variation of
side stream abundance with stream length, affording a full description of
fluctuations in network structure. Fluctuations in side stream numbers are
shown to be a direct result of fluctuations in stream lengths. This is the last
paper in a series of three on the geometry of river networks.

121
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5.1 Introduction

This is the last paper in a series of three on the geometry of river networks.
In the first [32] we examine in detail the description of river networks by
scaling laws [31, 35, 87, 110] and the evidence for universality. Additional
introductory remarks concerning the motivation of the overall work are to
found in this first paper. In the second article [33] we address distributions of
the basic components of river networks, stream segments and sub-networks.
Here, we provide an analysis complementary to the work of the second paper
by establishing a description of how river network components fit together.
As before, we are motivated by the premise that while relationships of mean
quantities are primary in any investigation, the behavior of higher order
moments potentially and often do encode significant information.

Our purpose then is to investigate the distributions of quantities which
describe the architecture of river networks. The goal is to quantify these
distributions and, where this is not possible, to quantify fluctuations. In
particular, we center our attention on Tokunaga’s law [144, 145, 146] which
is a statement about network architecture describing the tributary structure
of streams. Since Tokunaga’s law can be seen as the main part of a platform
from which all other river network scaling laws follow [31], it is an obvious
starting point for the investigation of fluctuations in river network structure.
We use data from the Schediegger model of random networks [112] and the
Mississippi river. We find the distributions obtained from these two disparate
sources agree very well in form. We are able to write down scaling forms
of all distributions studied. We observe a number of distributions to be
exponential, therefore requiring only one parameter for their description. As
a result, we introduce a dimensionless scale ξt, finding it to be sufficient to
describe the fluctuations present in Tokunaga’s law and thus potentially all
river network scaling laws. Significantly, we observe the spatial distribution
of stream segments to be random implying we have reached the most basic
description of network architecture.

Tokunaga’s law is also intimately connected with drainage density, ρ, a
quantity which will be used throughout the paper. Drainage density is a mea-
sure of stream concentration or, equivalently, how a network fills space. We
explore this connection in detail, showing how simple assumptions regarding
drainage density lead to Tokunaga’s law.

The paper is structured as follows. We first outline Horton-Strahler
stream ordering which provides the necessary descriptive taxonomy for river
network architecture. We then define Tokunaga’s law and introduce a scaling
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law for a specific form of drainage density. We briefly describe Horton’s laws
for stream number and length and some simple variations. (Both stream
ordering and Horton’s laws are covered in more detail in [33]). We show
that the scaling law of drainage density may be taken as an assumption from
which all other scaling laws follow. We also briefly consider the variation of
basin shapes (basin allometry) in the context of directedness. This brings
us to the focal point of the paper, the identification of a statistical gener-
alization of Tokunaga’s law. We first examine distributions of numbers of
tributaries (side streams) and compare these with distributions of stream seg-
ment lengths. We observe both distributions to be exponential leading to the
notion that stream segments are distributed randomly throughout a network.
The presence of exponential distributions also leads to the introduction of
the characteristic number ξt and the single length-scale ξl(s) ∝ ξt. We then
study the variation of tributary spacing along streams so as to understand
fluctuations in drainage density and again find the signature of randomness.
This leads us to develop a joint probability distribution connecting the length
of a stream with the frequency of its side streams.

5.2 Definitions

5.2.1 Stream ordering

Horton-Strahler stream ordering[58, 128] breaks a river network down into
a set of stream segments. The method can be thought of as an iterative
pruning. First, we define a source stream as the stream section that runs
from a channel head to the first junction with another stream. These source
streams are classified as the first-order stream segments of the network. Next,
we remove all source streams and identify the new source streams of the
remaining network. These are the network’s second-order stream segments.
The process is repeated until one stream segment is left of order Ω. The
order of the basin is then defined to be Ω (we will use the words basin and
network interchangeably).

In discussing network architecture, we will speak of side streams and
absorbing streams. A side stream is any stream that joins into a stream
of higher order, the latter being the absorbing stream. We will denote the
orders of absorbing and side streams by µ and ν but when referring to an
isolated stream or streams where their relative rank is ambiguous, we will
write stream order as ω, subscripted as seems appealing.
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Central to our investigation of network architecture is stream segment
length. As in [33], we denote this length by l

(s)
ω for a stream segment of order

ω. We will also introduce a number of closely related lengths which describe
distances between side streams. When referring to streams throughout we
will specifically mean stream segments of a particular order unless otherwise
indicated. This is to avoid confusion with the natural definition of a stream
which is the path from a point on a network moving upstream to the most
distant source. For an order ω basin, we denote this main stream length by
lω

Note also that we consider river networks in planform, i.e., as networks
projected onto the horizontal (or gravitationally flat) plane. This simplifi-
cation poses no great concern for the analysis of large scale networks such
as the Mississippi but must be considered in the context of drainage basins
with significant relief.

5.2.2 Tokunaga’s law

Defining a stream ordering on a network allows for a number of well-defined
measures of connectivity, stream lengths and drainage areas. Around a
decade after the Strahler-improved stream ordering of Horton appeared,
Tokunaga introduced the idea of measuring side stream statistics [144, 145,
146]. This technique arguably provides the most useful measurement based
on stream ordering but has only recently received much attention [22, 31, 102,
147]. The idea is simply, for a given network, to count the average number of
order ν side streams entering an order µ absorbing stream. This gives 〈Tµ,ν〉,
a set of double-indexed parameters for a basin. Note that Ω ≥ µ > ν ≥ 1,
so we can view the Tokunaga ratios as a lower triangular matrix. An ex-
ample for the Mississippi river is shown in Table 5.2.2 1 The same data is
represented pictorially in Figure 5.1 in what we refer to as a Tokunaga graph.

Tokunaga made several key observations about these side stream ratios.
The first is that because of the self-similar nature of river networks, the
〈Tµ,ν〉 should not depend absolutely on either of µ or ν but only on the
relative difference, i.e., k = µ − ν. The second is that in changing the value
of k = µ−ν, the 〈Tµ,ν〉 must themselves change by a systematic ratio. These

1The network for the Mississippi was extracted from a topographic dataset constructed
from three arc second USGS Digital Elevation Maps, decimated by averaging to approx-
imately 1000 meter horizontal resolution (www.usgs.gov). At this grid scale, the Missis-
sippi was found to be an order Ω = 11 basin.
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Figure 5.1: A Tokunaga graph for the Mississippi River. The values are given in
Table 5.2.2. Each point represents a Tokunaga ratio 〈Tµ,ν〉. The solid lines follow
variations in the order of the absorbing stream µ while the dotted lines follow
unit increments in both µ and ν, the order of side streams. In comparison, the
Tokunaga graph of an exactly self-similar network would have points evenly spaced
at ln T1 + (µ + ν − 1) ln RT where 1 ≤ ν < µ = 2, 3, . . . ,Ω, i.e., all lines in the plot
would be straight and uniformly spaced, with the dotted lines being horizontal.
The nature of deviations in scalings laws for river networks is addressed in [32].

ν = 1 2 3 4 5 6 7 8 9 10

µ = 2 1.7
3 4.9 1.3
4 12 3.8 1.1
5 29 9.1 2.9 1.0
6 71 23 7.7 3.0 1.2
7 190 56 19 7.8 3.3 1.1
8 380 110 39 17 6.9 2.6 1.0
9 630 170 64 28 11 4.5 3.0 0.60
10 1100 270 66 29 13 4.3 2.7 1 1
11 1400 510 120 66 25 12 9 3 1 1

Table 5.1: Tokunaga ratios for the Mississippi River. The row indices are the
absorbing stream orders while the columns correspond to side stream orders. Each
entry is the average number of order ν side streams per order µ absorbing stream.
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statements lead to Tokunaga’s law:

〈Tµ,ν〉 = 〈Tk〉 = 〈T1〉 (RT )k−1. (5.1)

Thus, only two parameters are necessary to characterize the set of Tµ,ν : T1

and RT .
The parameter T1 > 0 is the average number of side streams of one order

lower than the absorbing stream, typically on the order of 1.0–1.5. Since
these side streams of one order less are the dominant side streams of the
basin, their number estimates the basin’s breadth. In general, larger values
of 〈T1〉 correspond to wider basins while smaller values are in keeping with
basins with relatively thinner profiles.

The ratio RT > 1 measures how the density of side streams of decreasing
order increases. It is a measure of changing length scales and has a simple
interpretation with respect to Horton’s laws which we describe below. Thus,
already inherent in Tokunaga’s law is a generalization of drainage density
ρ. the usual definition of which is given as follows. For a given region of
landscape with area A with streams totalling in length L, ρ = L/A and
has the dimensions of an inverse length scale [58]. One may think of ρ as
the inverse of the typical distance between streams, i.e., the characteristic
scale beyond which erosion cannot more finely dissect the landscape [58].
In principle, drainage density may vary from landscape to landscape and
also throughout a single region. Below, we will turn this observation about
Tokunaga’s law around to show that all river network scaling laws may be
derived from an expanded notion of drainage density.

Even though the number of side streams entering any absorbing stream
must of course be an integer, Tokunaga’s ratios are under no similar obliga-
tion since they are averages. Nevertheless, Tokunaga’s law provides a good
sense of the structure of a network albeit at a level of averages. One of our
main objectives here is to go further and consider fluctuations about and the
full distributions underlying the 〈Tµ,ν〉.

Finally, a third important observation of Tokunaga is that two of Horton’s
laws follow from Tokunaga’s law, which we next discuss.

5.2.3 Horton’s laws

We review Horton’s laws [31, 58, 116] and then show how self-similarity and
drainage density lead to Tokunaga’s law, Horton’s laws and hence all other
river network scaling laws.
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The relevant quantities for Horton’s relations are nω, the number of order
ω streams, and 〈lω〉, the average main stream length (as opposed to stream

segment length 〈l (s)
ω 〉) of order ω basins. The laws are simply that the ratio

of these quantities from order to order remain constant:

nω+1

nω
= 1/Rn and

〈lω+1〉
〈lω〉

= Rl, (5.2)

for ω ≥ 1. Note the definitions are chosen so that all ratios are greater
than unity. The number of streams decreases with order while all areas and
lengths grow.

A similar law for basin areas [58, 116] states that 〈aω+1〉/〈aω〉 = Ra where
〈aω〉 is the average drainage area of an order ω basin. However, with the
assumption of uniform drainage density it can be shown that Rn ≡ Ra [31]
so we are left with the two independent Horton laws of equation (5.2).

As in [33], we consider another Horton-like law for stream segment lengths:

〈

l
(s)
ω+1

〉

〈

l
(s)
ω

〉 = Rl(s) . (5.3)

As we will show, the form of the distribution of the variable Tµ,ν is a direct

consequence of the distribution of l
(s)
ω .

Tokunaga showed that Horton’s laws of stream number and stream length
follow from what we have called Tokunaga’s law, equation (5.1). For example,
the solution of a difference equation relating the nω and the Tk leads to the

result Rn = AT +[A2
T − 2RT ]

1/2
where AT = (2+RT +T1)/2 for Ω = ∞ and

a more complicated expression is obtained for finite Ω [31, 102, 145, 146]. In
keeping with our previous remarks on T1, this expression for Rn shows that
an increase in T1 will increase Rn which, since Ra ≡ Rn, corresponds to a
network where basins tend to be relatively broader. Our considerations will
expand significantly on this connection between the network descriptions of
Horton and Tokunaga.

5.3 The implications of a scaling law for drainage

density

We now introduce a law for drainage density based on stream ordering. We
write ρµ,ν for the number of side streams of order ν per unit length of order µ
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absorbing stream. We expect these densities to be independent of the order
of the absorbing stream and so we will generally use ρν . The typical length
separating order ν side streams is then 1/ρν . Assuming self-similarity of river
networks, we must have

ρν+1/ρν = 1/Rρ (5.4)

where Rρ > 1 independent of ν.
All river network scaling laws in the planform may be seen to follow from

this relationship. Consider an absorbing stream of order µ. Self-similarity
immediately demands that the number of side streams of order µ − 1 must
be statistically independent of µ. This number is of course 〈T1〉. Therefore,
the typical length of an order µ absorbing stream must be

〈

l (s)
µ

〉

= 〈T1〉 /ρµ−1. (5.5)

Using equation (5.4) to replace ρµ−1 in the above equation, we find

T1/ρµ−1 = RρT1/ρµ−2. (5.6)

Thus, T2 = RρT1 and, in general Tk = (Rρ)
k−1T1. This is Tokunaga’s law

and we therefore have

Rρ ≡ RT . (5.7)

Equation (5.4) and equation (5.5) also give

〈

l (s)
µ

〉

= T1/ρµ−1 = RρT1/ρµ−2 = Rρ

〈

l
(s)
µ−1

〉

. (5.8)

On comparison with equation (5.3), we see that the above is our Hortonian
law of stream segment lengths and that

Rρ ≡ Rl(s) . (5.9)

As Rl(s) is the basic length-scale ratio in the problem, we rewrite equa-
tion (5.4), our Hortonian law of drainage density, as

ρν+1/ρν = 1/Rl(s). (5.10)

The above statement becomes our definition of the self-similarity of drainage
density.
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5.4 Basin allometry

Given that we have suggested the need for only a single relevant length ratio,
we must remark here on basin allometry. Allometry refers to the relative
growth or scaling of a shape’s dimensions and was originally introduced in the
context of biology [62]. A growth or change being allometric usually implies
it is not self-similar. A longstanding issue in the study of river networks has
been whether or not basins are allometric [35, 54, 110].

Consider two basins described by (L1, W1) and (L2, W2) within the same
system where Li is a characteristic longitudinal basin length and Wi a charac-
teristic width. The basins being allometric means that (W1/W2) = (L1/L2)

H

where H < 1. Thus, two length ratios are needed to describe the allometry
of basins. If we consider basins defined by stream ordering then we have the
Horton-like ratios RL and RW = RH

L . Now, when rescaling an entire basin,
streams roughly aligned with a basin’s length will rescale with the factor RL

and those perpendicular to the basin’s axis will rescale differently with RW .
This creates a conundrum: how can basins be allometric (RL 6= RW ) and yet
individual streams be self-similar (RL = RW ) as implied by Horton’s laws?

We contend the answer is that allometry must be restricted to directed
networks and that self-similarity of basins must hold for non-directed net-
works. This is in agreement with Colaiori et al. [19] who also distinguish
between self-similar and allometric river basins although we stress here the
qualification of directedness. Directed networks have a global direction of
flow in which the direction of each individual stream flow has a positive com-
ponent. A basic example is the random model of Scheidegger [112] which
we describe below. For a directed network, RL = Rl, and the rescaling of
basin sizes matches up with the rescaling of stream lengths regardless of how
the basin’s width rescales since all streams are on average aligned with the
global direction of flow. Hence, our premise that streams rescale in a self-
similar way is general enough to deal with systems whose basins rescale in
an allometric fashion.

In considering the allometry of basins, we must also address the addi-
tional possibility that individual stream lengths may scale non-trivially with
basin length. In this case, the main stream length l would vary with the
longitudinal basin length L as l ∝ Ld. This is typically a weak dependence
with 1.0 < d < 1.15 [87, 143]. Note that Horton’s laws still apply in this case.
The exponent d plays a part in determining whether or not a basin scales
allometrically. The exponent H introduced in the discussion of basin allom-
etry can be found in terms of Horton’s ratios (or equivalently Tokunaga’s
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parameters) and d as H = d lnRn/ lnRl − 1 [31].

Thus, for a directed network d = 1 and H ≤ 1 (e.g., Scheidegger [112])
whereas for undirected, self-similar networks H = 1 and d ≥ 1 (e.g., random
undirected networks [84, 85]). River networks are in practice often neither
fully directed or undirected. Scaling laws observed in such cases will show
deviations from pure scaling that may well be gradual and difficult to de-
tect [32].

5.5 Tokunaga distributions

The laws of Tokunaga and Horton relate averages of quantities. In the re-
mainder of this paper, we investigate the underlying distributions from which
these averages are made. We are able to find general scaling forms of a num-
ber of distributions and in many cases also identify the basic form of the
relevant scaling function.

Figure 5.2: Scheidegger’s random directed networks. Sites are arranged on a
triangular lattice and stream flow is directed down the page. At each site, the flow
direction is randomly chosen to be in one of the directions shown on the left. The
dashed box indicates the area “drained” by the local site.

To aid and motivate our investigations, we examine, as we have done in
both [32] and [33], a simple model of directed random networks that was
first introduced by Scheidegger [112] Since we make much of use this model
in the present work, we provide a self-contained discussion. Consider the
triangular lattice of sites oriented as in Figure 5.2. At each site of the lattice
a stream flow direction is randomly chosen between the two possible diagonal
directions shown. It is therefore trivial to generate the model on a large
scale, allowing for a thorough investigation of its river network statistics.
The small, tilted box with a dashed boundary represents the area drained
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by the enclosed site. As with many discrete-space models, the details of the
underlying lattice are unimportant. On a square lattice, the model’s streams
would have three choices of flow, two diagonals and straight down the page.
However, the choice of a triangular lattice does simplify implementation and
calculation of statistics. For example, only one tributary can exist at each
site along a stream and stream paths and basin boundaries are precisely those
of the usual discrete-space random walk [39].

Since random walks are well understood, the exponents of many river net-
work scaling laws are exactly known for the Scheidegger model [61, 138, 139,
140] and analogies may also be drawn with the Abelian sandpile model [26].
For example, a basin’s boundaries being random walks means that a basin of
length L will typically have a width W ∝ L1/2 which gives H = 1/2. Since
the network is directed, stream length is the same as basin length, l = L, so
we trivially have d = 1. Basin area a is estimated by WL ∝ L3/2 ∝ l3/2 so
l ∝ a2/3 giving Hack’s law with an exponent of 2/3 [54].

Nevertheless, the Tokunaga parameters and the Horton ratios are not
known analytically. Estimates from previous work [31] find T1 ' 1.35, Rl =
RT ' 3.00 and Rn ' 5.20. Data for the present analysis was obtained on
L = 104 by W = 3 × 103 lattices with periodic boundaries. Given the self-
averaging present in any single instance on these networks, ensembles of 10
were deemed sufficient.

We first examine the distributions of Tokunaga ratios Tµ,ν and observe

a strong link to the underlying distribution of l
(s)
µ . Both are well described

by exponential distributions. To understand this link, we next consider the
distances between neighboring side streams of like order. This provides a
measure of fluctuations in drainage density and again, exponential distri-
butions appear. We are then in a position to develop theory for the joint
probability distribution between the Tokunaga ratios and stream segment
lengths and, as a result, the distribution for the quantity Tµ,ν/l

(s)
µ and its

inverse. In the limit of large µ, the Tµ,ν are effectively proportional to l
(s)
µ

and all fluctuations of the former exactly follow those of the latter.

All investigations are initially carried out for the Scheidegger model where
we may generate statistics of ever-improving quality. We find the same forms
for all distributions for the Mississippi data (and for other river networks not
presented here) and provide some pertinent examples. Perhaps the most
significant benefit of the simple Scheidegger model is its ability to provide
clean distributions whose form we can then search for in real data.

Figure 5.3 shows the distribution of the number of order ν = 2 side
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Figure 5.3: An example of a generalized Tokunaga distribution for the Scheidegger
model. The Tokunaga ratio Tµ,ν is the number of side streams of order ν entering
an absorbing stream of order µ. For this particular example µ = 6 and ν = 2. The
form is exponential and is a result of variations in stream segment length rather
than significant fluctuations in side stream density.

streams entering an order µ = 6 absorbing stream for the Scheidegger model.
At first, it may seem surprising that this is not a single-peaked distribution
centered around 〈Tµ,ν〉 dying off for small and large values of Tµ,ν .

The distribution of Tµ,ν in Figure 5.3 is clearly well described by an expo-
nential distribution. This can also be seen upon inspection of Figures 5.4(a)
and 5.4(b). Figure 5.4(a) shows normalized distributions of Tµ,ν for ν = 2
and varying absorbing stream order µ = 4, 5 and 6. These distributions
(plus the one for absorbing stream order µ = 7) are rescaled and presented
in Figure 5.4(b). The single form thus obtained suggests a scaling form of
the Tµ,ν distribution is given by

P (Tµ,ν) = (Rl(s))
−µF

[

Tµ,ν(Rl(s))
−µ
]

. (5.11)

where F is an exponential scaling function. However, this only accounts for
variations in µ, the order of the absorbing stream.

Figures 5.5(a) and 5.5(b) show that a similar rescaling of the distributions
may be effected when ν is varied. In this case, the data is for the Mississippi.
The rescaling is now by Rl(s) rather than R−1

l(s)
and equation (5.11) is improved
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Figure 5.4: Distributions for Tokunaga ratios for varying orders of absorbing
stream and fixed side stream order of ν = 2 for the Scheidegger network. In (a),
examples of Tµ,ν distributions for absorbing stream order µ = 4 (circles), µ = 5
(squares) and µ = 6 (triangles). In (b), these distributions, as well as the µ = 7
case, are rescaled according to equation (5.11). The resulting “data collapse” gives
a single distribution. For the Scheidegger model, Rl(s) ' 3.00.

to give

P (Tµ,ν) = (Rl(s))
µ−ν−1PT

[

Tµ,ν/(Rl(s))
µ−ν−1

]

. (5.12)

The function PT is a normalized exponential distribution independent of µ
and ν,

PT (z) =
1

ξt
e−z/ξt , (5.13)

where ξt is the characteristic number of side streams of one order lower than
the absorbing stream, i.e., ξt = 〈T1〉. For the Mississippi, we observe ξt ' 1.1
whereas for the Scheidegger model, ξt ' 1.35. As expected, the Tokunaga
distribution is dependent only on k = µ − ν so we can write

P (Tk) = (Rl(s))
k−1PT

[

Tµ,ν/(Rl(s))
k−1
]

. (5.14)

with PT as above.
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Figure 5.5: Tokunaga distributions for varying side stream orders for the Missis-
sippi river basin. In both (a) and (b), the absorbing stream order is µ = 5 and
the side stream orders are ν = 2 (circles), ν = 3 (squares) and ν = 4 (triangles).
The raw distributions are shown in (a). In (b) the distributions are rescaled as per
equation (5.12). For the Mississippi, the ratio is estimated to be Rl(s) ' 2.40 [33].

5.6 Distributions of stream segment lengths

and randomness

As we have suggested, the distributions of the Tokunaga ratios depend strongly
on the distributions of stream segment lengths. Figure 5.6 is the indicates
why this is so. The form of the underlying distribution is itself exponential.
We have already examined this fact extensively in [33] and here we develop
its relationship with the Tokunaga distributions.

Figures 5.6(a) and 5.6(b) show that the distributions of l
(s)
µ can be rescaled

in the same way as the Tokunaga distributions. Thus, we write the distribu-
tion for stream segment lengths as [33]

P (l (s)
µ ) = (Rl(s))

−µ+1Pl(s)

[

l (s)
µ /(Rl(s))

−µ+1
]

. (5.15)

As for PT , the function Pl(s) is a normalized exponential distribution

Pl(s)(z) =
1

ξl(s)
e−z/ξ

l(s) , (5.16)



5.6 Distributions of stream segment lengths and randomness 135

(a) (b)

0 1000 2000 3000
−6

−5

−4

−3

−2

lω
 (s)

lo
g 10

 P
(l ω (

s)
 )

0 2 4 6
−4

−3

−2

−1

0

lω
 (s) (R

l
 (s) )−ω

lo
g 10

(R
l (

s)
 )

ω
 P

(l ω (
s)
)

Figure 5.6: Stream segment length distributions for varying stream order for the
Scheidegger model. Lengths are in units the lattice spacing. Shown in (a) are raw
distributions for ω = 4 (circles), ω = 5 (squares) and ω = 6. The linear forms
on the semilogarithmic axes indication these distributions are well approximated

by exponentials [33]. In (b), the distributions in (a) plus the distribution for l
(s)
7

(diamonds) are rescaled using equation (5.15).

where, in a strictly self-similar network, ξl(s) is the characteristic length of

first-order stream segments, i.e., ξl(s) = 〈l (s)
1 〉. (Note that in [33] we use ξ

for ξl(s) for ease of notation). We qualify this by requiring the network to
be exactly self-similar because in most models and all real networks this
is certainly not the case. As should be expected, there are deviations from
scaling for the largest and smallest orders. Therefore, ξl(s) is the characteristic
size of a first-order stream as determined by scaling down the average lengths
of those higher order streams that are in the self-similar structure of the
network. It is thus in general different from 〈l (s)

1 〉.

We therefore see that the distributions of Tµ,ν and l
(s)
µ are both exponen-

tial in form. Variations in l
(s)
µ largely govern the possible values of the Tµ,ν .

However, Tµ,ν is still only proportional to l
(s)
µ on average and later on we will

explore the joint distribution from which these individual exponentials arise.

The connection between the characteristic number ξt and the length-scale



136 CHAPTER 5: Fluctuations in network architecture

ξl(s) follows from equations (5.3), (5.5), and (5.10):

ξt = ρ1Rl(s)ξl(s). (5.17)

This presumes exact scaling of drainage densities and in the case where this
is not so, ρ1 would be chosen so that (Rl(s))

ν−1ρ1 most closely approximates
the higher order ρν .

We come to an important interpretation of the exponential distribution as
a composition of independent probabilities. Consider the example of stream
segment lengths. We write p̃µ as the probability that a stream segment of
order µ meets with (and thereby terminates at) a stream of order at least µ.
For simplicity, we assume only one side stream or none may join a stream
at any site. We also take the lattice spacing α to be unity so that stream
lengths are integers and therefore equate with the number of links between
sites along a stream. For α 6= 1, derivations similar to below will apply with
l
(s)
µ replaced by [l

(s)
µ /α], where [·] denotes rounding to the nearest integer.

Note that extra complications arise when the distances between neighboring
sites are not uniform.

Consider a single instance of an order µ stream segment. The probability
of this segment having a length l

(s)
µ is given by

P (l (s)
µ ) = p̃µ(1 − p̃µ)

l
(s)
µ . (5.18)

where p̃µ is the probability that an order an order µ stream segment termi-
nates on meeting a stream of equal or higher order. We can re-express the
above equation as

P (l (s)
µ ) ' p̃µ exp{−l (s)

µ ln(1 − p̃µ)
−1}, (5.19)

and upon inspection of equations (5.15) and (5.16) we make the identification

(Rl(s))
µ−1ξl(s) = [− ln(1 − p̃µ)]

−1, (5.20)

which has the inversion

p̃µ = 1 − e−1/(R
l(s)

)µ−1ξ
l(s) . (5.21)

For µ sufficiently large such that p̃µ � 1, we have the simplification

p̃µ ' 1/(Rl(s))
µ−1ξl(s). (5.22)

We see that the probabilities satisfy the Horton-like scaling law

p̃µ/p̃µ−1 = 1/Rl(s). (5.23)

Thus, we begin to see the element of randomness in our expanded description
of network architecture. The termination of a stream segment by meeting a
larger branch is effectively a spatially random process.
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Figure 5.7: A comparison of inter-tributary length distributions for the Scheidegger
model. The example here is for order µ = 6 absorbing streams and order ν = 3
side streams. Note that no rescaling of the distributions has been performed. The

three length variables here correspond to x=b, x=i and x=e, i.e., l
(s,b)
µ,ν (circles)

l
(s, i)
µ,ν (squares), and l

(s, e)
µ,ν (triangles). These are the beginning, internal and end

distances between entering side branches, defined fully in the text. No quantitative
difference between these three lengths is observed.

5.7 Generalized drainage density

Having observed the similarity of the distributions of Tµ,ν and l
(s)
µ , we proceed

to examine the exact nature of the relationship beteween the two. To do so,
we introduce three new measures of stream length. These are l

(s, b)
µ,ν , the

distance from the beginning of an order µ absorbing stream to the first order
ν side stream; l

(s, i)
µ,ν , the distance between any two adjacent internal order

ν side streams along an order µ absorbing stream; and l
(s, e)
µ,ν , the distance

from the last order ν side stream to the end of an order µ absorbing stream.
By analysis of these inter-tributary lengths, we will be able to discern the
distribution of side stream location along absorbing streams. This leads
directly to a more general picture of drainage density which we fully expand
upon in the following section.

Figure 5.7 compares normalized distributions of l
(s, b)
µ,ν , l

(s, i)
µ,ν and l

(s, e)
µ,ν for

the Scheidegger model. The data is for the distance between order ν =
3 side streams entering order µ = 6 absorbing streams. Once again, the
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Figure 5.8: An examination of the asymptotic behavior of distributions of internal
inter-tributary lengths. The data here is for the Scheidegger model for the case of
fixed side stream order ν = 2. The plot in (a) shows distributions for absorbing
stream order µ = 3 (circles), µ = 4 (squares), µ = 6 (triangles), and µ = 8 (dia-
monds). As µ increases, the distributions, which are all individually exponential,
tend towards a fixed exponential distribution. Since lower order stream segments

have typically smaller lengths, they statistically block larger values of l
(s, i)
µ,ν , re-

ducing the extent of the distribution tails for low µ. This is further evidenced in

(b) which provides a plot of 〈l(s, i)µ,ν 〉, the mean inter-tributary stream length, as a

function of µ with ν = 2. These mean values approach 〈l(s, i)µ,ν=2〉 = 1/ρ2 ' 10.1
where ρ2 is the density of second-order side streams.

distributions are well approximated by exponential distributions. Moreover,
they are indistinguishable. This indicates, at least for the Scheidegger model,
that drainage density is independent of relative position of tributaries along
an absorbing stream.

We now consider the effect on the distribution of internal inter-tributary
distances l

(s, i)
µ,ν following from variations in µ, the order of the absorbing

stream. Figure 5.8(a) provides a comparison of l
(s, i)
µ,ν distributions for ν = 2

and µ = 3 through µ = 8. As µ increases, the distributions tend towards a
limiting function. With increasing µ we are, on average, sampling absorbing
streams of greater length and the full range of l

(s, i)
µ,ν becomes accordingly more

accessible. This approach to a fixed distribution is reflected in the means of
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the distributions in Figure 5.8(a). Shown in Figure 5.8(b), the means 〈l(s, i)µ,ν 〉
for ν = 2 approach a value of around 10.1. The corresponding density of
second-order streams for the Scheidegger model is thus ρ2 = 1/〈l(s, i)µ,ν=2〉 '
0.01. Higher drainage densities follow from equation (5.10). However, since
deviations occur for small ν, there will also be an approach to uniform scaling
to consider with drainage density.

5.8 Joint variation of Tokunaga ratios and

stream segment length

We have so far observed that the individual distributions of the l
(s)
µ and Tµ,ν

are exponential and that they are related via the side-stream density ρnu.
However, this is not an exact relationship. For example, given a collection
of stream segments with a fixed length l

(s)
µ we expect to find fluctuations in

the corresponding Tokunaga ratios Tµ,ν .
To investigate this further we now consider the joint variation of Tµ,ν with

l
(s)
µ from a number of perspectives. After discussing the full joint probability

distribution P (Tµ,ν , l
(s)
µ ) we then focus on the quotient v = Tµ,ν/l

(s)
µ and its

reciprocal w = l
(s)
µ /Tµ,ν . The latter two quantities are measures of drainage

density and inter-tributary length for an individual absorbing stream.

5.8.1 The joint probability distribution

We build the joint distribution of P (Tµ,ν , l
(s)
µ ) from our conception that

stream segments are randomly distributed throughout a basin. In equa-
tion (5.18), we have the probability of a stream segment terminating after

l
(s)
µ steps. We need to incorporate into this form the probability that the
stream segment also has Tµ,ν order ν side streams. Since we assume place-
ment of these side streams to be random, we modify equation (5.18) to find

P (l (s)
µ , Tµ,ν) = p̃µ

(

l
(s)
µ − 1

Tµ,ν

)

pTµ,ν

ν (1 − pν − p̃µ)
l
(s)
µ −Tµ,ν−1, (5.24)

where
(

n
k

)

= n!/k!(n−k)! is the binomial coefficient and pν is the probability
of absorbing an order ν side stream. The extra pν appears in the last factor
(1 − pν − p̃µ) because this term is the probability that at a particular site
the stream segment neither terminates nor absorbs an order ν side stream.
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Also, it is simple to verify that the sum over l
(s)
µ and Tµ,ν of the probability

in equation (5.19) returns unity.

While equation (5.19) does precisely describe the joint distribution P (l
(s)
µ , Tµ,ν),

it is somewhat cumbersome to work with. We therefore find an analogous
form defined for continuous rather than discrete variables. We simplify our
notation by writing p = pν , q = (1 − pν − p̃µ) and p̃ = p̃µ. We also replace

(l
(s)
µ , Tµ,ν) by (x, y) where now x, y ∈ R. Note that 0 ≤ y ≤ x − 1 since the

number of side streams cannot be greater than the number of sites within a
stream segment.

Equation (5.19) becomes

P (x, y) = Np̃
Γ(x)

Γ(y + 1)Γ(x − y)
(p)y(q)x−y−1, (5.25)

where we have used Γ(z + 1) = z! to generalize the binomial coefficient. We
have included the normalization N to account for the fact that we have moved
to continuous variables and the resulting probability may not be cleanly
normalized. Also we must allow that N = N(p, p̃) and we will be able to
identify this form more fully later on. Using Stirling’s approximation [13],
that Γ(z + 1) ∼

√
2πzz+1/2e−z, we then have

P (x, y) = Np̃pyqx−y−1 1√
2π

(x − 1)x−3/2

yy+1/2(x − y − 1)x−y−1/2

= N
p̃√
2πq

pyqx−y(x − 1)−1/2

(

y

x − 1

)−y−1/2(

1 − y

x − 1

)−x+y+1/2

' N ′x−1/2 [F (y/x)]x (5.26)

where we have absorbed N and all terms involving only p and p̃ into the
prefactor N ′ = N ′(p, p̃) = Np̃/(

√
2πq). We have also assumed x is large such

that x − 1 ' x and 1 � 1/x ' 0.
The function F (v) = F (v; p, q) identified above has the form

F (v) =

(

1 − v

q

)−(1−v)(
v

p

)−v

. (5.27)

where 0 < v < 1 (here and later, the variable v will refer to y/x). Note that
for fixed x, the conditional probability P (y | x) is proportional to [F (y/x)]x.
Figure 5.9(a) shows [F (v)]x for a range of powers x. The basic function has
a single peak situated near v = p. For increasing x which corresponds to
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Figure 5.9: Form of the joint distribution of Tokunaga ratios and stream seg-
ment lengths. The distribution is given in equation (5.26) and is built around the

function F (v = Tµ,ν/l
(s)
µ ) given in equation (5.27). Shown in (a) is [F (v)]l

(s)
µ for

l
(s)
µ = 1, 10, 100 and 1000. Increasing l

(s)
µ corresponds to the focusing of the shape.

In (b), the distribution P (Tµ,ν | l (s)
µ ' 340) is compared between theory (smooth

curve) and data from the Scheidegger model (circles). The Scheidegger model data

is compiled for a range of values of l
(s)
µ rescaled as per equation (5.28).

increasing l
(s)
µ , the peak becomes sharper approaching (when normalized) a

delta function, i.e., limx→∞[F (v)]x = δ(v − p).
Figure 5.9(b) provides a comparison between data for the Scheidegger

model and the analytic form of P (l
(s)
µ , Tµ,ν). For this example, µ = 6 and

ν = 2 which corresponds to p ' 0.10, q ' 0.90 and p̃ ' 0.001 (using the
results of the previous section). The smooth curve shown is the conditional

probability P (y |X) for the example value of X = l
(s)
µ ' 340 following from

equation (5.26). From simulations, we obtain a discretized approximation to

P (l
(s)
µ , Tµ,ν). For each fixed x = l(s) in the range 165 . l

(s)
µ . 345, we rescale

the data using the following derived from equation (5.26),

P (X, y) = N ′X−1/2
(

N ′−1
x1/2P (x, y)

)X/x

. (5.28)

All rescaled data is then combined, binned and plotted as circles in Fig-
ure 5.9(b), showing excellent agreement with the theoretical curve.
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5.8.2 Distributions of side branches per unit stream
length

Having obtained the general form of P (l
(s)
µ , Tµ,ν), we now delve further into

its properties by investigating the distributions of the ratio v = Tµ,ν/l
(s)
µ and

its reciprocal w.
The quantity Tµ,ν/l

(s)
µ is the number of side streams per length of a given

absorbing stream and when averaged over an ensemble of absorbing streams
gives

〈

Tµ,ν/l
(s)
µ

〉

= ρν . (5.29)

Accordingly, the reciprocal l
(s)
µ /Tµ,ν is the average separation of side streams

of order ν.
First, we derive P (Tµ,ν/l

(s)) from P (l
(s)
µ , Tµ,ν). We then consider some in-

tuitive rescalings which will allow us to deduce the form of the normalization
N(p, q).

We rewrite equation (5.26) as

P (x, y) = N ′x−1/2 exp {−x ln [−F (y/x)]} . (5.30)

We transform (x, y) to the modified polar coordinate system described by
(u, v) with the relations

u2 = x2 + y2 and v = y/x. (5.31)

The inverse relations are x = u/(1 + v2) and y = uv/(1 + v2) and we also
have dxdy = xdudv. Equation (5.32) leads to

P (u, v) = N ′

(

u

1 + v2

)1/2

exp

{

− u

1 + v2
ln [−F (v)]

}

. (5.32)

To find P (v) we integrate out over the radial dimension u:

P (v) =

∫ ∞

u=0

duP (u, v)

= N ′

∫ ∞

u=0

du

(

u

1 + v2

)1/2

exp

{

− u

1 + v2
ln [−F (v)]

}

= N ′(1 + v2)(ln[−F (v)])−3/2

∫ ∞

z=0

dzz1/2e−z

= N ′′ 1 + v2

(ln[−F (v)])3/2
. (5.33)
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Figure 5.10: Comparison of theory with measurements of average inter-tributary
distances for the Scheidegger model. The data in both (a) and (b) is for the
case of order ν = 2 side streams and order µ = 6 absorbing streams. In (a),

the distribution of v = Tµ,ν/l
(s)
µ obtained from the Scheidegger model (circles)

is compared with the smooth curved predicted in equation (5.33). The same

comparison is made for the reciprocal variable w = l
(s)
µ /Tµ,ν , the predicted curve

being given in equation (5.34).

Here, N ′′ = N ′Γ(3/2) = N ′
√

π/2 and we have used the substitution z =
u/(1 + v2) ln[−F (v)].

The distribution for w = l
(s)
µ /Tµ,ν = 1/v follows simply from equa-

tion (5.33) and we find

P (w) = N ′′ 1 + w2

w4(ln[−F (1/w)])3/2
. (5.34)

Figures 5.10(a) and 5.10(b) compare the predicted forms of P (v) and
P (w) with data from the Scheidegger model. In both cases, the data is for
order ν = 2 side streams being absorbed by streams of order µ = 6. Note
that both distributions show an initially exponential-like decay away from a
central peak. Moreover, the agreement is excellent, offering further support
to the notion that the spatial distribution of stream segments is random.

Finally, we quantify how changes in the orders µ and ν affect the width
of the distributions by considering some natural rescalings. Figure 5.11(a)
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Figure 5.11: Distributions of the quantity Tµ,ν/l
(s)
µ for the Scheidegger model with

µ, the order of the absorbing stream, varying and the side stream order fixed
at ν = 2. Given in (a) are unrescaled distributions for µ = 5 (circles), µ = 6
(squares), µ = 7 (triangles), and µ = 8 (diamonds). Note that as the order of
the absorbing stream increases so does its typical length. This leads to better

averaging and the standard deviation of the distribution decays as R
−ω/2
l . The

distributions are all centered near the typical density of order ν = 2 side streams,
ρ2 ' 0.10. The rescaled versions of these distributions are given in (b) with the
details as per equation (5.36).

shows binned, normalized distributions of Tµ,ν/l
(s)
µ for the Scheidegger model.

Here, the side stream order is ν = 2 and the absorbing stream orders range
over µ = 5 to µ = 8. All distributions are centered around ρ2 ' 0.10.

Because the average length of l
(s)
µ increases by a factor Rl(s) with µ, the

typical number of side streams increases by the same factor. Since we can
decompose l

(s)
µ as

l (s)
µ = l(s, b)

µ,ν + l(s, i)µ,ν + . . . + l(s, i)µ,ν + l(s, e)µ,ν , (5.35)

where there are Tµ,ν − 1 instances of l
(s, i)
µ,ν , l

(s)
µ becomes better and better

approximated by (Tµ,ν + 1)〈l(s, i)µ,ν 〉.
Hence, the distribution of Tµ,ν/l

(s)
µ peaks up around ρ2 as µ increases, the

typical width reducing by a factor of 1/
√

Rl(s) for every step in µ. Using
this observation, Figure 5.11(b) shows a rescaling of the same distributions
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Figure 5.12: Distributions of number of side streams per unit length for the Schei-
degger model with ν, the order of side streams, varying. For both (a) and (b), the
absorbing stream order is µ = 6. Shown in (a) are the unrescaled distributions for
ν = 2 (circles), ν = 3 (squares), and ν = 4 (triangles). Note that as ν increases,
the mean number of side streams decreases as do the fluctuations. The distribu-
tions in (a) together with the distribution for ν = 5 (diamonds) are shown rescaled
in (b) as per equation (5.38).

shown in Figure 5.11(a). The form of this rescaling is

P (Tµ,ν/l
(s)
ν ) = (Rl(s))

µ/2G1

(

[Tµ,ν/l
(s)
ν − ρ2](Rl(s))

µ/2
)

(5.36)

where the function is similar to the form of P (v) given in equation (5.33). The
mean drainage density of ρ2 has been subtracted to center the distribution.

We are able to generalize this scaling form of the distribution further
by taking into account side stream order. Figures 5.12(a) and 5.12(b) re-

spectively show the unrescaled and rescaled distributions of Tµ,ν/l
(s)
µ with ν

allowed to vary. This particular example taken from the Scheidegger model is
for µ = 6 and the range ν = 1 to ν = 5. Since ν is now changing, the centers
are situated at the separate values of the ρν . Also, the typical number of side
streams changes with order ν so the widths of the distributions dilate as for
the varying µ case by a factor

√

Rl(s) . Notice that the rescaling works well
for ν = 2, . . . , 5 but not ν = 1. As we have noted, deviations from scaling
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Figure 5.13: Tokunaga statistics for the Mississippi river basin. The distributions
are as per Figure 5.12(a), distributions of number of side streams per unit length
with ν, the order of side streams, varying. The absorbing stream order is µ = 7
and the the individual distributions correspond to ν = 2 (circles), ν = 3 (squares)
and ν = 4 (triangles). All lengths are measured in meters. Rescalings of the
distributions shown in (a) along with that for ν = 5 (diamonds) are found in (b).
Reasonable agreement with equation (5.38) is observed.

from small orders are to be expected. In this case, we are led to write down

P (Tµ,ν/l
(s)
ν )(Rl(s))

−ν/2G2

(

[Tµ,ν/l
(s)
ν − ρν ](Rl(s))

−ν/2
)

(5.37)

where, again, G2(z) is similar in form to P (v).
We find the same rescalings apply for the Mississippi data. For exam-

ple, Figure 5.13(a) shows unrescaled distributions of Tµ,ν/l
(s)
ν for varying

ν. Figure 5.13(b) then shows reasonable agreement with the form of equa-
tion (5.37). In this case, the Scheidegger model clearly affords valuable guid-
ance in our investigations of real river networks. The ratio Rl(s) = 2.40 was

calculated from an analysis of l
(s)
ω and lω. The density ρ2 ' 0.0004 was

estimated directly from the distributions of Tµ,ν/l
(s)
ν and means that approx-

imately four second-order streams appear every ten kilometers.
Combining equations (5.38) and (5.38), we obtain the complete scaling

form

P (Tµ,ν/l
(s)
ν ) = (Rl(s))

(µ−ν−1)/2G
(

[Tµ,ν/l
(s)
ν − ρν ](Rl(s))

(µ−ν−1)/2
)

. (5.38)
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As per G1 and G2, the function G is similar in form to P (v).
The above scaling form makes intuitive sense but is not obviously obtained

from an inspection of (5.33). We therefore examine P (v) by determining
the position and magnitude of its maximum. Rather than solve P ′(v) = 0
directly, we find an approximate solution by considering the argument of
the denominator, − ln F (v), with F (v) given in equation (5.27). Since the
numerator of P (v) is 1 + v2 and the maximum occurs for small v this is a
justifiable step. Setting dF/dv = 0, we thus have

− ln
1 − v

q
+ ln vp = 0, (5.39)

which gives vm = p/(q+p) = p/(1− p̃). Note that for p̃ � 1, we have vm ' p.
Substituting v = vm = p/(1 − p̃ into equation (5.33), we find

P (vm) ' N ′′p̃−3/2 = Np̃−1/22−3/2 (5.40)

presuming p2 � 1 and q ' 1. Returning to the scaling form of equa-
tion (5.38), we see that the p̃−1/2 factor in equation (5.40) accounts for the
factors of (Rl(s))

µ/2 since p̃ = p̃µ scales from level to level by the ratio Rl(s) .
We therefore find the other factor (Rl(s))

ν/2 of equation (5.38) gives N = cp1/2

where c is a constant. Since p = pν , it is the only factor that can provide
this variation. We thus have found the variation with stream order of the
normalization N and have fully characterized, P (x, y), the continuum ap-

proximation of P (l
(s)
µ , Tµ,ν).

5.9 Concluding remarks

We have extensively investigated river network architecture as viewed in plan-
form. We identify the self-similarity of a form of drainage density as the
essence of the average connectivity and structure of networks. From previ-
ous work in [31], we then understand this to be a base from which all river
network scaling laws may obtained.

We have extended the description of tributary structure provided by
Tokunaga’s law to find that side stream numbers are distributed exponen-
tially. This in turn is seen to follow from the fact that the length of stream
segments are themselves exponentially distributed. We interpret this to be
consequence of randomness in the spatial distribution of stream segments.
Furthermore, the presence of exponential distributions indicate fluctuations
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in variables are significant being on the order of mean values. For the ex-
ample of stream segment lengths, we thus identify ξl(s), a single parameter
needed to describe all moments. This is simply related to ξt, which describes
the distributions of Tokunaga ratios. The exponential distribution becomes
the null hypothesis for the distributions of these variables to be used in the
examination of real river networks.

We are able to discern the finer details of the connection between stream
segment length and tributary numbers. Analysis of the placement of side
streams along a stream segment again reveals exponential distributions. We
are then able to postulate a joint probability distribution for stream segment
lengths and the Tokunaga ratios. The functional form obtained agrees well
with both model and real network data. By further considering distributions
of the number of side streams per unit length of individual stream segments,
we are able to capture how variations in the separation of side streams are
averaged out along higher-order absorbing streams.

By expanding our knowledge of the underlying distributions through em-
piricism, modeling and theory, we obtain a more detailed picture of network
structure with which to compare real and theoretical networks. We have also
further shown that the simple random network model of Scheidegger has an
impressive ability to produce statistics whose form may then be observed in
nature. Indeed, the only distinction between the two is the exact value of
the scaling exponents and ratios involved since all distributions match up in
functional form.

We end with a brief comment on the work of Cui et al. [22] who have
recently also proposed a stochastic generalization of Tokunaga’s law. They
postulate that the underlying distribution for the Tµ,ν is a negative binomial
distribution. One parameter additional to T1 and RT , α, was introduced
to reflect “regional variability,” i.e., statistical fluctuations in network struc-
ture. This is in the same spirit as our identification of a single parameter
ξt. However, our work disagrees on the nature of the underlying distribution
of Tµ,ν . We have consistently observed exponential distributions for Tµ,ν in
both model and real networks.

In closing, by finding randomness in the spatial distribution of stream
segments, we have arrived at the most basic description of river network
architecture. Understanding the origin of the exact values of quantities such
as drainage density remains an open problem.
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CHAPTER 6

Concluding remarks

The findings of the four papers that constitute this thesis provide a detailed
framework through which to view river network geometry. Moreover, much of
this framework has potential to be adapted to the analysis of other branch-
ing and non-branching networks. We have approached the study of river
networks by combining what we identify as three principle avenues of scien-
tific investigation: formulation of mathematical statements, numerical study
of idealized models, and observation of empirical data. Ideas generated in
each approach transfer to the others, speeding overall development.

The foundation of the thesis lies in our unification of river network scaling
laws. From a few simple assumptions about the details of network architec-
ture, we show that all scaling laws may be derived. The assumptions are
that Tokunaga’s law holds, individual stream paths may be self-affine and
that networks are space-filling (drainage density is uniform). Importantly,
we observe that the addition of the space-filling assumption implies that Hor-
ton’s laws and Tokunaga’s law are equivalent in their descriptive content. We
show that Horton’s laws reduce from three to two with the deduction that
the stream number and area ratios are identical. Furthermore, we are able
to revise previous notions of fractal dimensions for river networks.

This work also reduces the number of independent scaling exponents re-
quired to describe river networks to two. We have generally taken these to
be (h, d), i.e., Hack’s exponent and the scaling exponent for stream lengths.
For most purposes, such as the identification of universality classes, this pair
of exponents provides a suitable level of description. However, we also show
that knowledge of scaling exponents cannot fully describe the details of net-
work architecture. For example, Hack’s exponent depends on the Horton
ratios as h = ln Rl/ lnRn. Thus, we cannot retrieve the Horton ratios, or
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equivalently, the Tokunaga parameters from knowledge of scaling laws only.
The thesis then proceeds to examine in depth a number of facets of this

initial work. We first tackle Hack’s law, the scaling of main stream length
with area. We identify two major elements missing from a simple scaling
law: fluctuations and deviations. We are able to go beyond fluctuations and
postulate a form for the joint probability distribution of main stream lengths
and areas, what we call the Hack distribution. As an aside, we find a form for
the joint distribution of time to first return and area enclosed by a random
walk. We further find fluctuations to be on the order of the mean values
of mains stream lengths and basin areas. Reasonable but limited agreement
with data from real world networks is observed. Regardless of the quality
of the match, we identify the measurement of fluctuations as an important
addition to the characterization of network structure.

The inclusion of fluctuations is a necessary first step towards the big pic-
ture view of Hack’s law but we are still dealing with an idealized conception.
We see the limitations to agreement with real world networks as being due
to deviations from scaling. Focusing on the Kansas and Mississippi river
basins, we find Hack’s law to exhibit three distinctive behaviors at what we
term small, intermediate and large scales.

At small scales, we find Hack’s exponent to be unity due to the presence
of long, narrow sub-networks. The extent of this regime will vary from land-
scape to landscape. We observe that the hillslope scale, of which the range
of this linearity might feasibly be an estimate, is generally masked by larger,
linear sub-networks.

A crossover in scaling links Hack’s law at small scales to its form at
intermediate scales. Here, where we expect to be able to measure Hack’s
exponent, we actually observe slow drifts in local measurements of the Hack
exponent. So while the scaling appears to be robust at first glance, our deeper
examination finds it to be only an approximate scaling. The existence of such
trends bar us from assigning precise values of scaling exponents to these
river networks. This also partly explains the variation of scaling exponents
recorded in the literature. Without consideration of these slow trends and
the deviations at small and large scales, the values of measured exponents
must be reconsidered. Indeed, we observe the range of even this approximate
scaling region is much reduced from the overall span of basin sizes. Moreover,
we observe that the average value of Hack’s exponent through this region
varies from basin to basin. All of this is significant since we cannot then
hope to identify a universality class to which all river networks belong.

At large scales, we are able to find suggestions of the origin of the slow
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trends at intermediate scales. We find that local values of Hack’s exponent
fluctuate strongly at large scales. We observe that this is partly due to the
statistical growth of fluctuations of main stream lengths and basin areas.
However, we find these fluctuations are correlated with overall basin shape.
In terms of stream ordering, the highest two differences in Hack’s law show
significant correlations in all cases we examine. This implies that internal
basin shapes one to two orders of magnitude smaller in area than the overall
basin can be affected by the outer shape.

We observe that basin shapes result from statistical fluctuations (chance)
and geology with varying degrees of either component. Where the latter
is dominant, we see that geology is not “washed out” of overall network
structure but is subtly reflected in scaling law deviations. We see this as the
beginning of a more complicated but ulimately more satisfactory approach
to the understanding of river network statistics.

This takes us to the halfway point of the thesis. In the last two chapters
we generalize Horton’s laws and Tokunaga’s law. The former is seen as a
description of network components, how they change in number and size
with stream order. We take these Horton relations of mean quantities and
extend them to relations between probability distribution functions. We
postulate the basic forms of these distributions and find good agreement
between theory and observations of real data and the Scheidegger model.
We start from the empirical observation that stream segment lengths have
exponential distributions. From this, we develop analytic connections to
distributions of main stream lengths for fixed stream order and then to power
law distributions of main stream lengths without stream ordering. From a
practical point of view, we put forward the utility of measuring fluctuations
and higher order moments for all of these distributions.

Our observation that stream segment lengths are exponential connects
well with our generalization of Tokunaga’s law, the basic expression of net-
work architecture. Here, we rephrase the work done in chapter 2 to place
scaling of drainage density as the central assumption needed to derive Toku-
naga’s law and hence all other laws. Looking more deeply into network
structure, we show that the presence of exponential distributions implies
that stream segments are distributed randomly throughout a basin. We thus
reach the lowest level at which description of network architecture is still
meaningful.

In particular, we find side streams to be distributed randomly along ab-
sorbing streams which themselves terminate with fixed probability. This
leads to a joint probability distribution between the number of side streams



154 CHAPTER 6: Concluding remarks

and the length of an absorbing stream. We reduce this to a distribution of
the ratio of these two variables and their inverse. In all cases, we find ex-
cellent agreement with our predictions and Scheidegger’s model and, though
the data is more sparse, with real networks.

Throughout the thesis, we find great motivation in the Scheidegger model.
We consider this to be for river networks what the Ising model is for phase
transitions, [49, 60]. Along with its connection to many problems in ran-
dom walks, we find all forms of network statistics to be embodied by the
Scheidegger model. Differences between it and the real world come down to
parameters. We would hope that this thesis raises the Scheidegger model to
a position of greater respect.

But a model is still a model and this thesis also makes substantial ef-
forts to analyze real world river networks. Indeed, one of the attractions of
studying river networks is the availability of large-scale topographic datasets.
Nevertheless, even though we have been able to extract very good statistics,
future higher resolution datasets promise to allow more and more refinement
of our comparisons between reality and theory.

Ultimately, we hope that the advances made here and elsewhere in the
quantification of river network geometry will be linked with dynamic theories
of network evolution. Several directions of interest lie open.

We have shown that geology entwines itself with the forms of network
scaling laws. Any simple theory of network evolution will have to contend
with this issue. Here, we have been able to show overall basin shape correlates
with large scale deviations of Hack’s law. With more extensive studies of
real networks, we may begin to further understand this entanglement and
eventually be able to separate geology from simple physics.

A natural question about river networks regards their connection with
their ambient topography. How does the structure of networks relate to the
structure of a surface? The surface itself must encode a great deal more
information than the network. By considering large-scale networks we have
avoided this problem but for small-scale networks where vertical range is
significant, this is an intriguing problem.

Beyond these considerations of static structures, there is the eventual
need for dynamical theories of networks and surfaces whose time-dependent
aspects may be tested by accessible data. The sticking point here is of course
the availability of such data. Two possibilities arise here. If the geologic
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history of a region are understood, it should be possible to identify basin
shapes of, say, tectonic origins into which networks have grown. This gives
an initial structure for models to be tested on. Comparisons would have to
be done largely at a statistical level due to the randomness we have observed
underlying any network structure.

Secondly, with constantly updated, inexpensive, remotely-sensed topo-
graphic data of sufficiently fine resolution, the recording of subtle changes
in the earth’s topography over long time scales becomes a possibility. This
is possibly best done by tracking changes in mature river network structure.
These changes occur largely in the position of channel heads and can be
sensitive to, for example, changes in climate over small time-scales.

Some wandering thoughts on the maturity of a science. In my estimation,
we enjoy a universe about which we have started to collate a concrete core
of knowledge. Newton’s laws, for example, have held firm within a broad
realm of behavior. They have stood up to become kernels of isometric truth
rather than be swept away by differing conceptions of reality. The extraor-
dinary discoveries of quantum behavior and general relativity have come as
extensions rather than refutations.

The creation of a firm, inner core of theory is one possible definition of
a hardening of a science. There has long been a distinction made between
hard and soft sciences, a distinction that has not always been taken as a
pleasurable one. Indeed, there is the not unreasonable implication that hard
is solid and right while soft is plastic and unformed.

But the further attachment of estimates of worth is unreasonable. For
example, biology (piano) deals with problems of marvelous complexity that
are fundamental in the understanding of consciousness and intelligence. Gen-
eral relativity (forte), sharing a happy kinship with mathematics as it does,
thrives on exactness and rigidity. Which is more difficult? Is biology simply
a younger science that will mature with time and be subsumed into physics
departments?

From a general scientific perspective, we want to lay bare the underlying
mechanisms that give rise to what we observe. For example, the mechanisms
in fluid dynamics are, for the most part, encapsulated in the Navier-Stokes
equations. In biology, there seems to be a molecule for every action, part
of an enormous tool box generated by the experimentation of evolution. We
are naturally led in biology to cataloging, working to locate broad patterns.
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In all of science, we find many levels of description. Most desirable is to
start at one level and, working by reason and logic, be able to describe the
next higher one. We constantly descend further into the onion, looking for
the axiomatic kernel that will lay bare the reasons for the onion itself. And
maybe many other vegetables as well.

Perhaps a better alternative to the poles of hard and soft is to consider
the universality of principles. How fragmented is a science’s description?
How many axioms are required to generate the patterns of a given level from
the level below?

There is no magic in the world, just causal mechanisms. One of course
cannot prove this but simply appeal to the idea of taking this as the most
natural premise. And so it is an amusing and potent feature of consciousness
that through billions of neural interconnections and the intricacies of history,
we can nevertheless so easily map reality into a world of magical actions.
The task of the scientist is often to unravel that which appears to involve
illusion. And, for a lack of understanding of the mind, it is this task that,
above everything else, most closely resembles sorcery.



Appendix A

Analytic treatment of
generalized Horton’s laws

A.1 Analytic connections between stream length

distributions

In this appendix we consider a series of analytic calculations. These concern
the connections between the distributions of stream segment lengths l

(s)
ω ,

ordered basin main stream lengths lω and main stream lengths l. We will
idealize the problem in places, assuming perfect scaling and infinite networks
while making an occasional salubrious approximation. Also, we will treat
the problem of lengths fully noting that derivations of distributions for areas
follow similar but more complicated lines.

We begin by rescaling the form of stream segment length distributions

P (l (s)
ω , ω) = (Rn − 1)(RnRl(s))

−ωFl(s)(lR
−ω
l(s)

). (A.1)

The normalization cl(s) = Rn − 1 stems from the requirement that

∫ ∞

u=0

Fl(s)(u) = 1, (A.2)

which is made purely for aesthetic purposes. As we have suggested in equa-
tion (4.8) and demonstrated empirical support for, Fl(s)(u) is well approxi-
mated by the exponential distribution ξ−1e−u/ξ. For low u and also we have
noted that deviations do of course occur but they are sufficiently insubstan-
tial as to be negligible for a first order treatment of the problem.
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A.1.1 Distributions of main stream lengths as a func-
tion of stream order

We now derive a form for the distribution of main stream lengths P (lω|ω). As

we have discussed, since lω =
∑ω

i=1 l
(s)
ω , we have the convolution (4.9). The

right-hand side of equation (4.9) consists of exponentials as per equation (4.8)
so we now consider the function Kω(u;~a) given by

Kω(u;~a) = a1e
−a1u ∗ a2e

−a2u ∗ · · · ∗ aωe−aωu, (A.3)

where ~a = (a1, a2, . . . , aω). We are specifically interested in the case when
no two of the ai are equal, i.e., ai 6= aj for all i 6= j. To compute this
ω-fold convolution, we simply examine the Kω(u;~a) for ω = 2 and ω = 3
and identify the emerging pattern. For ~a = (a1, a2) we have, omitting the
prefactors for the time being,

e−a1u ∗ e−a2u

=
e−a1u − e−a2u

a1 − a2

=
e−a1u

a1 − a2

+
e−a2u

a2 − a1

(A.4)

providing a1 6= a2. Convolving this with e−a3u we obtain

e−a1u ∗ e−a2u ∗ e−a3u =

(

e−a1u − e−a2u

a1 − a2

)

∗ e−a3u,

=
e−a1u − e−a3u

(a1 − a2)(a1 − a3)
− e−a2u − e−a3u

(a1 − a2)(a2 − a3)
,

=
e−a1u

(a1 − a2)(a1 − a3)
+

e−a2u

(a2 − a1)(a2 − a3)
+

e−a3u

(a3 − a1)(a3 − a2)
. (A.5)

Generalizing from this point, we obtain

Kω(u;~a) =

(

ω
∏

i=1

ai

)

ω
∑

i=1

e−aiu

∏ω
j=1,j 6=i(ai − aj)

. (A.6)

Now, setting ai = 1/(ξ(Rl(s))
i−1) and carrying out some manipulations we
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obtain the following expression for P (lω, ω):

P (lω, ω) =
1

(Rn)ω

1
∏ω

j=1 ξ(Rl(s))
i−1

ω
∑

i=1

e−lω/ξ(R
l(s)

)i−1

∏ω
j=1,j 6=i(1/ξ(Rl(s))

i−1 − 1/ξ(Rl(s))
j−1)

,

=
1

(Rn)ω

1

ξω
∏ω

j=1(Rl(s))
j−1

ω
∑

i=1

e−lω/ξ(R
l(s)

)i−1

ξω−1

∏ω
j=1,j 6=i(Rl(s))

i−1
∏ω

j=1,j 6=i(Rl(s))
j−1

∏ω
j=1,j 6=i(Rl(s))

j−1 − (Rl(s))
i−1

,

=
1

(Rn)ω

ξω−1

ξω

ω
∑

i=1

e−lω/ξ(R
l(s)

)i−1 (Rl(s))
−2(i−1)

∏ω
j=1(Rl(s))

i−1
∏ω

j=1(Rl(s))
j−1
∏ω

k=1(Rl(s))
−(j−1)

(Rl(s))
−(ω−1)

∏ω
j=1,j 6=i(Rl(s))

j − (Rl(s))
i

,

=
1

(Rn)ω

1

ξ

ω
∑

i=1

e−lω/ξ(R
l(s)

)i−1 (Rl(s))
(i−1)(ω−2)(Rl(s))

ω−2/Rl(s)
∏ω

j=1,j 6=i(Rl(s))
j − (Rl(s))

i
,

=
1

(Rn)ω

1

ξRl(s)

ω
∑

i=1

e−lω/ξ(R
l(s)

)i−1 (Rl(s))
i(ω−2)

∏ω
j=1,j 6=i(Rl(s))

j − (Rl(s))
i

(A.7)

Note that we have added in a factor of 1/(Rn)ω for the appropriate nor-
malization. In addition, one observes that P (0, ω) = 0 for all ω > 1 since all
convolutions of pairs of exponentials vanish at the origin. Furthermore, the
tail of the distribution is dominated by the exponential corresponding to the
largest stream segment.

The next step is to connect to the power law distribution of main stream
lengths, P (l) (see Figure 4.7 and the accompanying discussion). On consid-
ering equation (4.10) we see that the problem can possibly be addressed with
some form of asymptotic analysis.

Before attacking this calculation however, we will simplify the notation
keeping only the important details of the P (lω, ω). Our main interest is to
see how equation (4.10) gives rise to a power law. We transform the outcome
of equation (A.7) by using n = ω, u = lω/ξ, r = Rl(s), and s = Rn, neglecting
multiplicative constants and then summing over stream orders to obtain

G(u) =

∞
∑

n=1

1

sn

n
∑

i=1

r(n−2)ie−u/ri−1

∏n
j=1,j 6=i(r

j − ri)
. (A.8)

The integration over lω has been omitted meaning that the result will be a
power law with one power lower than expected.

A.1.2 Power law distributions of main stream lengths

We now show that this sum of exponentials G(u) in equation (A.8) does in
fact asymptotically tend to a power law. We first interchange the order of
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summation replacing
∑∞

n=1

∑n
i=1 with

∑∞
i=1

∑n
n=i to give

G(u) =

∞
∑

i=1

e−u/ri−1
∞
∑

n=1

r(n−2)i

sn
∏n

j=1,j 6=i(r
j − ri)

,

=
∞
∑

i=1

Cie
−u/ri−1

. (A.9)

We thus simply have a sum of exponentials to contend with. The coefficients
Ci appear unwieldy at first but do yield a simple expression after some algebra
which we now perform:

Ci =

∞
∑

n=1

r(n−2)i

sn
∏n

j=1,j 6=i(r
j − ri)

,

=
1

∏i−1
j=1(r

j − ri)

∞
∑

n=i

r(n−2)i

sn
∏n

j=i+1(r
j − ri)

,

=
r(i−2)i

∏i−1
j=1(r

j − ri)

1

si

∞
∑

n=i

sir(n−2)ir−(i−2)i

sn
∏n

j=i+1(r
j − ri)

,

=
1

∏i−1
j=1 r−i(rj − ri)

r−i

si

∞
∑

n=i

r(n−i)i

sn−i
∏n

j=i+1(r
j − ri)

,

=
1

∏i−1
j=1(r

j−i − 1)

1

risi

∞
∑

n=i

1
∏n

j=i+1 sr−i(rj − ri)
,

=
1

risi

1
∏i−1

j=1(r
j−i − 1)

∞
∑

n=i

n
∏

j=i+1

1

s(rj−i − 1)
,

=
1

risi

1
∏i−1

j=1(r
j−i − 1)

∞
∑

n=i

n
∏

j=i+1

1

s(rj−i − 1)
,

=
1

risi

(

−1
∏i−1

k=1(1 − r−k)

)(

∞
∑

m=1

m
∏

k=1

1

s(rk − 1)

)

. (A.10)

In reaching the last line we have shifted the indices in several places. In the
last bracketed term we have set k = j − i and then m = n − i while in the
first bracketed term, we have used −k = j − i. Immediately of note is that
the last term is independent of i and may thus be ignored.

The first bracketed term does depend on i but converges rapidly. Writing
Di =

∏i−1
k=1(1− r−k) we have that Di = Dm

∏i−1
k=m(1− r−k). Taking m to be
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fixed and large enough such that 1− r−k is approximated well by exp{−r−k}
for k ≥ m, we then have

Di = Dm exp

{

i−1
∑

k=m

−r−k

}

,

= Dm exp

{

r1−m

(r − 1)
(1 − 1/ri−m−1)

}

. (A.11)

As i → ∞, Di clearly approaches a product of Dm and a constant. Therefore,
the first bracketed term in equation (A.10) may also be neglected in an
asymptotic analysis.

Hence, as i → ∞, the coefficients Ci are simply given by

Ci ∝
1

siri
. (A.12)

and we can approximate G(u) as, boldly using the equality sign,

G(u) = AS(u) = A

∞
∑

i=0

e−u/ri

ri(1+γ)
, (A.13)

where A comprises the constant part of the Ci and factors picked up by
shifting the lower limit of the index i from 1 to 0. We have also used here
the identification

s = rγ. (A.14)

We turn now to the asymptotic behavior of S(u), this being the final stretch
of our analysis

There are several directions one may take at this point. We will proceed
by employing a transformation of S(u) that is sometimes referred to as the
Sommerfeld-Watson transformation and also as Watson’s lemma [16, p. 239].
Given a sum over any set of integers I, say S =

∑

n∈I f(n), it can be written
as the following integral

S =
1

2πi

∮

C

π cos πz

sin πz
f(z)dz. (A.15)

where C is a contour that contains the points on the real axis n + i0 where
n ∈ I and none of the points of the same form with n ∈ Z/I. Calculation
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of the residues of the simple poles of the integrand return us to the original
sum.

Applying the transformation to S(u) we obtain

S(u) =
1

2πi

∮

C

π cos πz

sin πz
e−ur−z

r−z(1+γ)dz. (A.16)

The contour C is represented in Figure A.1. ��
� ���� �

�� �

Figure A.1: Contour C used for evaluation of the integral given in equation (A.16).
The poles are situated at n + 0i where n ∈ {0, 1, 2, . . . }.

We first make a change of variables, r−z = ρ. Substituting this and
dz = −dρ/ρ ln r into equation (A.16) we have

S(u) =
1

2πi

∮ ′

C

π cos−π ln ρ/ ln r

sin−π ln ρ/ ln r
e−uρρ(1+γ)(−dρ/ρ ln r)

=
1

2i ln r

∮ ′

C

π cos π ln ρ/ ln r

sin π ln ρ/ ln r
e−uρργdρ. (A.17)

The transformed contour C ′ is depicted in Figure A.2.
As u → ∞, the contribution to integral from the neighborhood of ρ = 0

dominates. The introduction of the sin and cos terms has created an interest-
ing oscillation that has to be handled with with some care. We now deform
the integration contour C ′ into the contour C ′′ of Figure A.3 focusing on the
interval along the imaginary axis [−i, i]. Choosing this path will simplify the
cos and sin expressions which at present have logs in their arguments.

The integral S(u) is now given by S(u) ' I(u) + c.c. where

I(u) =
−1

2i ln r

∫ i

0

π cos π ln ρ/ ln r

sin π ln ρ/ ln r
e−uρργdρ. (A.18)
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Figure A.2: Contour C ′ used for evaluation of the integral given in equation (A.17)
as deduced from contour C (Figure A.1) with the transformation ρ = r−z. The
negative real axis is a branch cut.
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Figure A.3: Contour C ′′ used for evaluation of the integral given in equation (A.16).
The poles are situated at n + 0i where n ∈ {0, 1, 2, . . . }.

Writing ρ = σ + iτ with σ = 0, we have dρ = idτ and the following for the
cos and sin terms:

cos π ln ρ/ ln r =
ρiπ/ ln r + ρ−iπ/ ln r

2
,

=
τ iπ/ ln re−π2/2 ln r + τ−iπ/ ln reπ2/2 ln r

2
, (A.19)

and

sin π ln ρ/ ln r =
ρiπ/ ln r − ρ−iπ/ ln r

2i
,

=
τ iπ/ ln re−π2/2 ln r − τ−iπ/ ln reπ2/2 ln r

2i
. (A.20)
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The cot term in the integrand becomes

cos π ln ρ/ ln r

sin π ln ρ/ ln r
= −i

1 + τ 2iπ/ ln re−π2/ ln r

1 − τ 2iπ/ ln re−π2/ ln r

= −i
1 + δ(τ)

1 − δ(τ)
, (A.21)

where δ(τ) = τ 2iπ/ ln re−π2/ ln r. The integral I(u) now becomes

I(u) =
i

2 ln r

∫ 1

0

1 + δ(τ)

1 − δ(τ)
e−iuττγeiπγ/2dτ

=
eiπ(1+γ)/2

2 ln r

∫ 1

0

e−iuττγ 1 + δ(τ)

1 − δ(τ)
dτ. (A.22)

Now, since |δ(τ)| = e−π2/ ln r . 10−4 (taking r = Rl(s) ≈ 2.5), we can expand
the expression as follows

1 + δ

1 − δ
= (1 + δ)(1 + δ + δ2 + . . . )

= 1 + 2δ + 2δ2 + 2δ3 + . . . (A.23)

The integral in turn becomes

I(u) =
i1+γ

2 ln r

∫ 1

0

dττγe−iuτ×
(

1 + 2τ 2iπ/ ln re−π2/ ln r + 2τ 4iπ/ ln re−2π2/ ln r + . . .

+ 2τ 2niπ/ ln re−nπ2/ ln r + . . .
)

(A.24)

The basic n-th integral in this expansion is

In(u) =

∫ 1

0

τγ+2niπ/ ln re−iuτdτ. (A.25)

Substituting uτ = w and replacing the upper limit w = u with w = ∞ we
have

In(u) = u−(1+γ+2niπ/ ln r)

∫ ∞

0

dwwγ+2niπ/ ln re−iw,

= (iu)−(1+γ+2niπ/ ln r)

∫ ∞

0

idw(iw)γ+2niπ/ ln re−iw,

= (iu)−(1+γ+2niπ/ ln r)

∫ ∞

0

dv(v)γ+2niπ/ ln re−v,

= (iu)−(1+γ+2niπ/ ln r)Γ(γ + 2niπ/ ln r). (A.26)
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Here, we have rotated the contour along the imaginary iw-axis to the real v-
axis and identified the integral with the gamma function Γ [50]. The integral
can now be expressed as

I(u) =
1

2 ln ru1+γ

[

1 + 2

∞
∑

n=1

u−2niπ/ ln rΓ(γ + 2niπ/ ln r)

]

. (A.27)

We now need to show that the higher order terms are negligible. Note that
their magnitudes do no vanish with increasing u but instead are highly os-
cillatory terms. Using the asymptotic form of the Gamma function [13]

Γ(z) = zz−1/2e−z
√

2π (1 + O(1/z)) , (A.28)

we can estimate as follows for large n that

|Γ(1 + γ + 2niπ/ ln r)|
∼ |(2iπn/ ln r + 1 + γ)2iπn/ ln r+1/2+γe−γ−1

√
2π|

= |(eiπ/22πn/ ln r)2iπn/ ln r+1/2+γe−γ−1
√

2π|
= e−π2n/ ln rnγ+1/2(2π/e)1+γ(ln r)−1/2−γ. (A.29)

Hence, Γ(1 + γ + 2niπ/ ln r) vanishes exponentially with n. For the first
few values of n taking γ = 3/2 and r = 2.5, we have Γ(1 + γ + 2iπ/ ln r) '
2.5×10−3 and Γ(1+γ+4iπ/ ln r) ' 2.1×10−6 showing that these corrections
are negligible.

Hence we are able estimate S(u) to first order as

S(u) ' 1

ln r
u−1−γ. (A.30)

Thus we have determined that a power law follows from the initial assumption
that stream segment lengths follow exponential distributions.

This equivalence has been drawn as an asymptotic one, albeit one where
convergences have been shown to be rapid. The calculation is clearly not
the entire picture as the solution does contain small rapidly-oscillating cor-
rections that do not vanish with increasing argument. A possible remaining
problem and one for further investigation is to understand how the distribu-
tions for main stream lengths lω fit together over a range that is not to be
considered asymptotic. Nevertheless, the preceding is one attempt at demon-
strating this rather intriguing breakup of a smooth power law into a discrete
family of functions built up from one fundamental scaling function.
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Appendix B

Restricted partitions and the
area-displacement distribution
for random walks

Abstract. For the standard discrete random walk, the probability distribu-
tion of displacement from the origin has long been understood to be Gaussian.
In 1+1 dimensions, the area or integral of the graph of a random walk is also
readily seen to be Gaussian. Here we calculate the form of the joint proba-
bility distribution for displacement and the area. This distribution is found
to be Gaussian with a simple form for the mean and an expression for the
variance is obtained in closed form. The result is based on the observation
of a connection to the theory of restricted partitions. In the case of a first
return to the origin, we find the joint distribution for area and number of
steps taken. Finally, we briefly discuss how this last result is significant in
the study of river networks.

B.1 Introduction

Random walks and their continuum analog of Brownian motion have been
studied and employed as basic models of detailed motion throughout physics,
chemistry, mathematics and economics [39, 45] Einstein first deduced a molec-
ular mechanism for Brownian motion in 1905 [36] and in the same year, Pear-
son introduced the discrete random walk as we think of it today [91, 100].
In this present paper, we endeavor to add to the vast literature that has
developed since then by calculating the joint probability distribution for dis-
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placement and area for the graph of a random walk in 1 + 1 dimensions.
This main result is achieved via a translation of the problem into one of
enumeration of certain types of partitions of numbers.

The archetypal random walk may be defined in terms of a person, who has
had too much to drink, stumbling home along a sidewalk. The disoriented
walker moves a distance L along the sidewalk in a fixed time step. After each
time step, our inebriated friend spontaneously and with an even chance turns
about face or maintains the same course and then wanders another distance
L only to repeat the same erratic decision process. The walker’s position
relative to the front door of his or her local establishment (x0 = 0) is given
by

xn = xn−1 + sn−1 =

n−1
∑

k=0

sk (B.1)

where each sk = ±L with equal probability. (L is set to unity for the rest
of the paper). Now, as is well known, the probability distribution for xk is
asymptotically Gaussian with

P (xn < x) → 1√
2πn

∫ x

−∞

e−u2/2ndu (B.2)

as n → ∞.

A graph depicting the displacement of an example walk is shown in Fig-
ure B.1. Here we are concerned with two features: xn, the displacement at
time n, and an, the usual area obtained by integration of the graph. The
latter is exactly given by

an =

n
∑

k=1

xk − xn/2. (B.3)

In terms of the steps sk, we therefore have using equations (B.1) and (B.3)
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Figure B.1: An example random walk. A first return occurs at n2 after the walk
leaves the origin at n1. Of interest is the joint probability distribution between
the area subtended by this excursion and the x = 0 axis and the number of steps
taken n2 − n1.

that

an =

n
∑

i=1

i−1
∑

j=0

sj − xn/2

=
n−1
∑

j=0

n
∑

i=j+1

sj − xn/2

=

n−1
∑

j=0

(n − j)sj − xn/2

=
n
∑

k=1

ksn−k − xn/2

=
n
∑

k=1

ks̃k − xn/2 (B.4)

where k = n − j has been substituted and we have introduced s̃k = sn−k.

The form of the area distribution may be obtained with a direct applica-
tion of the central limit theorem [39]. Taking the independent variables to
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be Xk = ks̃k for k = 1, . . . , n and Xn+1 = −xn/2 we have

µk = E(Xk) = 0 and σ2
k = Var(Xk) = k2 (B.5)

with µn+1 = 0 and σ2
n+1 = n/4. The variance for the distribution of an is

then given by

S2
n =

n+1
∑

k=1

σ2
k =

n
∑

k=1

k2 +
n

4
(B.6)

while the mean is clearly zero. For large n, we have

S2
n ∼ n3

3
(B.7)

since
∑n

k=1 k2 = n(n + 1)(2n+ 1)/6. The asymptotic form of the area distri-
bution is therefore

P (an < a) ∼
√

3

2πn3

∫ a

−∞

e−3u2/2n3

du. (B.8)

The same result may be obtained in the continuum case of Brownian motion
with the use of cumulants. The variance for the area distribution is essentially
obtained by integration of the variance of the displacement distribution [45].

B.2 Random walks and restricted partitions

Finding the form of P (an, xn, n), the joint distribution for area and displace-
ment after n steps, requires some more effort. The approach is to fix xn for
some n and then determine the conditional distribution for an. Returning to
equation (B.4) we can write

an =

n
∑

k=1

ks̃k − xn/2

=
1

2
n(n + 1) − 2

∑

k|s̃k=−1

k − xn/2

=
1

2
n(n + 1) − 2r − xn/2 (B.9)

Now, if a path reaches xn then the sequence {sk} (and {s̃k}) must contain
(n + xn)/2 instances of +1’s and (n − xn)/2 −1’s (note that xn and n are
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either both odd or even). We will denote the number of such paths that reach
xn with area an by #(an = 1

2
n(n + 1) − 2r − xn/2, xn). On examination of

equation (B.9), this may then be identified with the number of partitions of
the integer r into exactly (n− xn)/2 distinct parts none of which can exceed
n. We write this equality with the following notation

#(an =
1

2
(n + 1)(n + 2) − 2r − xn/2, xn)

= q(≤n, =(n − xn)/2, r)

= q(≤n, =(n − xn)/2,
1

4
n(n + 1) − xn/4 − an/2) (B.10)

Now, q(≤N, =M, r) is in turn related to several other partition quantities
and these connections will help our calculations. In the following, we build
a link from the area of a random walk to p(≤N,≤M, r) which is the number
of partitions of r with at most M parts, none of which exceeds N .

Firstly, we have [6]

p(≤N, =M, r) = q(≤N + M − 1, =M, r +
1

2
M(M − 1)) (B.11)

where p(≤ N, = M, r) is the number of partitions of r with M parts each no
greater than N . To see this, consider (α1, α2, . . . , αM), a partition of r with
1 ≤ α1 ≤ α2 ≤ · · · ≤ αM ≤ N , thus being one of those partitions counted in
p(≤N, =M, r). In correspondence to this is (α1 +0, α2 +1, . . . , αM +M −1),
a partition of r + 1

2
M(M − 1) with M distinct parts. The relationship can

be readily seen to be a bijection by considering the reverse mapping [6].
Next, we observe that

p(≤N, =M, r) = p(≤N − 1,≤M, r − M) (B.12)

Again we take (α1, α2, . . . , αM), a partition of r with 1 ≤ α1 ≤ α2 ≤ · · · ≤
αM ≤ N . Now, a partition of r − M may be constructed as (α1 − 1, α2 −
1, . . . , αM − 1). Removing those parts that are now zero, we have at most
M parts all of which are less than N −1. Again, consideration of the reverse
mapping demonstrates a bijection between the two types of partitions [6].

So, combining equations (B.10), (B.11), and (B.12) we have the following
identity:

#(an, xn) = p(≤N,≤M, ρ) (B.13)
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where

N =
n + xn

2

M =
n − xn

2

ρ =
1

4
n(n + 1) − 1

2

n − xn

2

(

n − xn

2
+ 1

)

− xn/4 − an/2

=
1

4
n2 − 1

2

(

n − xn

2

)2

− an/2. (B.14)

With this relationship established we now move to an examination of the
asymptotic properties of p(≤N,≤M, ρ). Since a Gaussian distribution is to
be expected, the principle results will be the calculation of the mean and the
variance.

B.3 Asymptotics of restricted partitions

The restricted partitions measured by p(≤N,≤M, ρ) have been well studied
in partition theory. However, the particular regime of asymptotics that we
will be interested in here has not been directly addressed and we will develop
the results in this section. The method used here hinges on a standard
saddle point approach developed by Hayman [56]. More specific applications
of saddle point techniques for problems involving restricted partitions may
be found in the work of Szekeres [133, 134].

Central to saddle point calculations are the canonical generating functions
associated with partitions. We write

G(≤N,≤M ; ξ) =

∞
∑

ρ=0

p(≤N,≤M, ρ)ξρ (B.15)

and since p(≤ M,≤ N, ρ) = 0 for ρ > MN , G is a polynomial in ξ of order
MN . The form of this generating function is explicitly known:

G(≤N,≤M ; ξ) =

∏N+M
k=1 (1 − ξk)

∏N
k=1(1 − ξk)

∏M
k=1(1 − ξk)

. (B.16)

and is more generally referred to as a Gaussian polynomial.
The coefficients of Gaussian polynomials, i.e., the p(≤ M,≤ N, ρ) them-

selves, are understood to be reciprocal and unimodal, the latter being a
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non-trivial result [6]. Here we show that they are also approximated by a
Gaussian distribution centered around MN/2.

For a given generating function f(z) =
∑∞

ρ=1 fρz
ρ we would like to esti-

mate fρ. To do this we employ Cauchy’s formula which gives

fρ =

∫

C

z−1−ρf(z) dz (B.17)

where C is the contour |z| = c0 and z = u + iv. Although any contour con-
taining the origin may be used, it turns out that the contour |z| = c0 provides
an integral that may be successfully estimated with Laplace’s method. This
observation holds for functions that for some range of u (as detailed below)
f(u) = max|z|=u f(z) and in general, a unique minimum along the real z axis
will be found at u = c0. Saddle point methods may now be applied.

The integral in equation (B.17) can be rewritten as

fρ =

∫

C

eln (f(z)/zρ) d(ln z). (B.18)

For ρ fixed, minimizing the argument of the exponential along z = ξ + i0
with respect to ln z gives

ξf ′(ξ)/f(ξ) = ρ. (B.19)

The position of the saddle point, z = c0, is thus a solution to this equation.
We now draw on the work of Hayman, who obtained a general result using

the saddle point method for a particular class of functions [56]. Here we use
Odlyzko’s interpretation of Hayman’s theorem as reproduced below [51].

Definition 1 Functions of the form

f(z) =
∞
∑

ρ=0

fρz
ρ (B.20)

are said to be H-admissible (H for Hayman) if (writing z = ξ + iν)

• f(z) is analytic in |z| < Ξ where 0 < Ξ < ∞,

• f(ξ) is real for |ξ| < Ξ,

• for Ξ0 < ξ < Ξ, max|z|=ξ |f(z)| = f(ξ),
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and, defining

a(ξ) = ξ
f ′(ξ)

f(ξ)
,

b(r) = ξa′(ξ) = ξ
f ′(ξ)

f(ξ)
+ ξ2f ′′(ξ)

f(ξ)
− ξ2

(

f ′(ξ)

f(ξ)

)2

(B.21)

it is required that, modulo some technical details, that b(ξ) → ∞ as ξ → Ξ.

For such functions we then have the following theorem due to Hayman [56]

Theorem 2 Given a function f(z), H-admissible in |z| < R, then, as ξ →
∞,

fρ = (2πb(ξ))−1/2f(ξ)ξ−ρ
(

e−(a(ξ)−ρ)2/b(ξ) + o(1)
)

(B.22)

The form of equation (B.22) can be recast to show that the values of the
fρ follow the form of a normal distribution:

fρ ∼ (2πb(ξ))−1/2f(ξ)e−(a(ξ)2−(a−
b(ξ)
2

ln ξ)2)/b(ξ)

× exp

{

− 1

b(ξ)

(

2a(ξ) − b(ξ) ln(ξ)

2

)2
}

=
c(ξ)

(2πσ(ξ))1/2
exp

{

−(ρ − µ(ξ))2

2σ(ξ)2

}

(B.23)

where the mean and variance are given by

µ(ξ) =
2a(ξ) − b(ξ) ln(ξ)

2
and σ(ξ)2 = b(ξ)/2. (B.24)

Since we are interested in the form of the p(≤N,≤M, ρ) around the center
ρ = MN/2, we will require that

µ(ξ) =
2a(ξ) − b(ξ) ln(ξ)

2
= MN/2 (B.25)

and this will determine the ξ at which we will apply the theorem. Thus, up
to a normalization factor we have

p(≤N,≤M, ρ) ∝ 1

(2πσ(ξ))1/2)
exp

{

−(ρ − µ(ξ))2

2σ(ξ)2

}

(B.26)
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with ξ, µ(ξ), σ(ξ) determined by equations (B.21), (B.24) and (B.25).
Returning to the generating function of equation (B.16), we may now

determine a(ξ) for the present case.

a(ξ) = ξ
G′(≤N,≤M ; ξ)

G(≤N,≤M ; ξ)

=

N
∑

k=1

kξk

1 − ξk
+

M
∑

k=1

kξk

1 − ξk
−

N+M
∑

k=1

kξk

1 − ξk
(B.27)

The sums in equation (B.27) can be evaluated for large, increasing M
and N using a Riemann integral approximation [13]:

N
∑

k=1

kξk

1 − ξk
= s2

N
∑

k=1

k

s

e−k/s

1 − e−k/s

1

r

∼ s2(γ2 − I(N/s)) (B.28)

where we have identified ξ = e−1/s,

I(x) =

∫ ∞

x

t

et − 1
dt (B.29)

and γ2 = π2/6 = I(0). We observe that s will be of the order of N (and M)
which means that the quantities such as N/s must be retained.

Therefore, a(ξ) is now given by

a(ξ) = s2

(

c2 + I

(

M + N

s

)

− I

(

N

s

)

− I

(

M

s

))

(B.30)

where s = (− ln ξ)−1. The form for b(ξ) is then obtained via the definition
b(ξ) = ξa′(ξ).

The requirement that the mean µ(ξ) = MN/2 (equation (B.25)) then
gives

MN/2 =

2s2

(

γ2 + I

(

M + N

s

)

− I

(

N

s

)

− I

(

M

s

))

+
1

2

[

(M + N)2

e−(M+N)/s − 1
− N2

e−N/s − 1
− M2

e−M/s − 1

]

. (B.31)
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For convenience, we now consider pairs of M and N related as M =
N(1 + α). Expecting that s is of the order of M and N we set s = λN .
Equation (B.31) becomes

(1 + α)/2 =

2λ2

(

γ2 + I

(

2 + α

λ

)

− I

(

1

λ

)

− I

(

1 + α

λ

))

+
1

2

[

(2 + α)2

e−(2+α)/s − 1
− 1

e−1/λ − 1
− (1 + α)2

e−(1+α)/λ − 1

]

(B.32)

which implicitly determines λ as a function of α.
Since by design, µ(ξ) = MN/2 we have only to determine the variance

σ(ξ)2 = b(ξ)/2 (equation (B.24)). Inverting equation (B.25) we have

b(ξ)/2 =
1

ln ξ
(a(ξ) − MN/2) (B.33)

Using the form of a(ξ) found in equation (B.30) along with s = λN and
M = (1 + α)N we find

σ(ξ)2 = b(ξ)/2 = β2(MN)3/2 (B.34)

where

β2 =
λ

(1 + α)1/2

×
[

1

2
− λ2

1 + α

(

γ2 + I(
2 + α

λ
) − I(

1 + α

λ
) − I(

1

λ
)

)]

(B.35)

B.4 The area-displacement distribution of a

random walk

The asymptotic form for p(≤N,≤M, ρ) may now be transformed back to the
random walk setting. Equations (B.13), (B.13), (B.26) (B.25) and (B.34)
combine to give

#(an, xn) = p(≤N,≤M, ρ)

∼ C√
2πσ(xn, n)

exp

{−(an − µ(xn, n))2

2σ(xn, n)2

}

(B.36)
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where

µ(xn, n) = nxn/2 and σ(xn, n)2 =
β2

2
(n2 − x2

n)3/2. (B.37)

The mean µ(xn, n) is simply the area of the triangle formed by a walk that
moves directly from the origin to the point (xn, n). Even though the asymp-
totic form is not assured to have any validity at for xn far from the origin,
it is nevertheless of note that the variance vanishes at xn = ±n. At each of
these end points, only one walk is possible and the distribution becomes a
delta function.

The normalization factor C in equation (B.36) is easily deduced by noting
that

∑

an

#(an, xn) = #(xn) (B.38)

where #(xn) is the frequency of walks that pass through xn. From equa-
tion (B.2) we have that

#(xn) ∼ 1√
2πn

e−x2
n/2n (B.39)

and therefore

#(an, xn)

∼ 1

2π
√

nσ(xn, n)
exp

{

−(an − µ(xn, n))2

2σ(xn, n)2
− x2

n

2n

}

=
1√

2nπβ(n2 − x2
n)3/4

exp

{

− (an − nxn/2)2

β2(n2 − x2
n)3/2

− x2
n

2n

}

(B.40)

as n → ∞.

B.5 The area distribution for the point of

first return

We now consider walks which first return to the origin after n steps. Given
the main result of this paper, this section provides, at least, a numerical
route to the distribution of areas for such walks. We start with walks that
return to the origin after n steps, without the condition that it be their first
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return. For these walks, we have xn = 0 and that n must be even. The area
distribution of equation (B.40) reduces to

#(an, 0) =
1√

2πβn2
e−a2

n/β2n3

(B.41)

We introduce f(a, n) and u(a, n), the probabilities of returning to the
origin after n steps with area a for the first time and for any number of times
respectively. We also define f(a, 0) = 0 and u(a, 0) = δa,0. The probability
u(a, n) is of course asymptotically given by #(an, 0) as per equation (B.41).

Generalizing a straightforward result for first return problems without
area [39] we have

u(a, n) = δa,0δn,0 +
∞
∑

j=−∞

n
∑

k=2

u(a − j, n − k)f(j, k) (B.42)

where j and k are restricted to even numbers within the given limits (an and
n are also both even). Multiplying each side by vawn and summing over a
and n then yields a relationship involving the generating functions of u and
f :

U(v, w) = 1 + U(v, w)F (v, w) (B.43)

where the double sum being a convolution affords a product of the generating
functions U and F . Rearranging equation (B.43) gives

F (v, w) =
U(v, w) − 1

U(v, w)
. (B.44)

The area distribution for walks that first return at n may therefore be ob-
tained by inverse transform of equation (B.44).
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Appendix C

Analysis of Digital Elevation
Maps

This appendix briefly outlines the method used in this thesis for extracting
networks from digitized topography. Since the actual datasets used will be
outmoded in the not too distant future, the details of the code developed are
largely irrelevant. Here, we simply record the basic ideas involved.

There are two main problems to contend with: the coordinate system of
the datasets and the problems confronted by local minima.

Large-scale datasets are typically stored in spherical coordinates, though
some are available in a format projected onto a uniform grid. With the latter,
the major concern is the quality of the projection that has been used. In the
case of the former, one must take care of the fact that individual grid cells
are not uniform in shape. Data that is recorded at fixed intervals of latitude
and longitude will mean when moving away from the equator cells become
thinner in the direction of the radial parameter. Another potential problem
is that the earth is not a sphere and that the data may have been stored in
reference to a non-spherical shape. However, this is much less of a concern
as the corrections in area and length calculations are of secondary order.

The second issue of local minima is the one that creates much work and
the method used here is certainly debatable. Local minima arise partly due
as artifacts of resolution. Relatively flat regions can also cause algorithms
trouble. And, of course, there are real lakes to contend with.

Out of a number of possible methods, a type of filling routine was created.
Sequentially at every point on a landscape, a walker (unit of precipitation) is
placed. The walker descends down the direction of steepest descent as far as
possible. If the edge of the dataset is reached then we start again at the next
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initial site. However if a site where there is no clear direction is reached (i.e.,
every way is up or more than two directions are at the same level which may
easily occur for rounded data) the walker has to take stock of the situation.
All local sites that are of equal height are first scouted out. The lowest points
of this region are then examined to see if an outlet (a point lower than the
region) exists. If not, the region is raised to the height of its lowest boundary
neighbor and the process is repeated: all equal heights are found and raised
if necessary. When an outlet is detected, a filling algorithm begins that adds
infinitesimal heights to points in the raised region. The amount added is
increased monotonically with distance from the outlet as measured within
the region (i.e., a “chemical distance” not a direct distance). It is ensured
that the region is not raised above its higher boundary neighbors. If several
outlets are present the same height additions are made from all of them.

After passing through the whole grid we have a filled topography that
has been constructed so that a walker starting at any site will reach the
edge of the grid. This is the most computationally expensive part of the
calculations although determination of drainage area does take some time as
well. Once the topography has been filled, we can readily extract a network,
i.e., a matrix of directions, and from there our computations become more
straightforward. Note that when calculating lengths and areas the height of
the topography is necessary for exact calculations. However, a mean height
is generally sufficient for this purpose.



Appendix D

Miscellaneous observations of
real river networks

In this last appendix we provide some data taken from real river networks.
Several major river basins are analyzed including the Mississippi, the Ama-
zon, the Nile, the Congo, and the Kansas River. For each network, a table
of Horton ratios as well as a table of Tokunaga ratios are presented.
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ω range Rn Ra Rl Rl(s)
Ra

Rn

Rl

R
l(s)

lnRl

ln Ra

[2, 3] 5.27 5.26 2.48 2.30 1.00 1.07 0.55
[2, 4] 4.99 5.08 2.44 2.32 1.02 1.05 0.56
[2, 5] 4.86 4.96 2.42 2.31 1.02 1.05 0.56
[2, 6] 4.81 4.92 2.42 2.33 1.02 1.04 0.56
[2, 7] 4.77 4.88 2.40 2.31 1.02 1.04 0.56
[2, 8] 4.69 4.85 2.39 2.33 1.03 1.03 0.57
[3, 4] 4.72 4.91 2.41 2.34 1.04 1.03 0.57
[3, 5] 4.70 4.82 2.40 2.31 1.03 1.04 0.57
[3, 6] 4.70 4.83 2.40 2.35 1.03 1.03 0.57
[3, 7] 4.69 4.82 2.38 2.31 1.03 1.03 0.56
[3, 8] 4.60 4.79 2.38 2.34 1.04 1.02 0.57
[4, 5] 4.67 4.72 2.39 2.28 1.01 1.05 0.57
[4, 6] 4.69 4.81 2.40 2.36 1.02 1.02 0.57
[4, 7] 4.68 4.80 2.37 2.30 1.03 1.03 0.56
[4, 8] 4.57 4.77 2.38 2.34 1.05 1.01 0.57
[5, 6] 4.72 4.90 2.42 2.43 1.04 0.99 0.57
[5, 7] 4.68 4.83 2.36 2.29 1.03 1.03 0.56
[5, 8] 4.51 4.77 2.37 2.35 1.06 1.01 0.57
[6, 7] 4.63 4.76 2.30 2.16 1.03 1.07 0.54
[6, 8] 4.39 4.71 2.36 2.35 1.07 1.00 0.58
[7, 8] 4.16 4.67 2.41 2.56 1.12 0.94 0.62

mean µ 4.69 4.85 2.40 2.33 1.04 1.03 0.57
std dev σ 0.21 0.13 0.04 0.07 0.03 0.03 0.01

σ/µ 0.045 0.027 0.015 0.031 0.024 0.027 0.025

Table D.1: Horton ratios for the Mississippi River. (This is the full version of
Table 4.1). For each range, estimates of the ratios are obtained via simple regres-
sion analysis. For each quantity, a mean µ, standard deviation σ and coefficient
of variation σ/µ are calculated. The values obtained for Rl are especially robust
while some variation is observed for the estimates of Rn and Ra. Good agreement
is observed between the ratios Rn and Ra and also between Rl and Rl(s) . The
network was extracted from a topography dataset composed of digital elevations
models obtained from the United States Geological Survey (www.usgs.gov). The
dataset is decimated so as to have horizontal resolution of approximately 1000
meters leading to an order Ω = 11 network.
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ν = 1 2 3 4 5 6 7 8 9 10
µ = 2 1.38 0 0 0 0 0 0 0 0 0

3 5.62 1.34 0 0 0 0 0 0 0 0
4 15.03 4.22 1.16 0 0 0 0 0 0 0
5 34.16 11.06 3.36 1.12 0 0 0 0 0 0
6 81.32 27.84 9.47 3.57 1.28 0 0 0 0 0
7 169.7 61.5 20.97 8.65 3.22 1.34 0 0 0 0
8 413.6 163.8 54.04 22.4 8.64 3.08 1.24 0 0 0
9 555.6 236.9 77 32.29 14 6 1.71 1.29 0 0
10 1190 466 120 46.5 18.5 6.5 5.5 0.5 1.5 0
11 845 315 69 21 8 3 0 1 0 0

Table D.2: Tokunaga ratios for the Mississippi.
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ω range Rn Ra Rl Rl(s)
Ra

Rn

Rl

R
l(s)

lnRl

ln Ra

[2, 3] 5.05 4.69 2.10 1.65 0.93 1.28 0.46
[2, 4] 4.79 4.71 2.10 1.82 0.98 1.16 0.48
[2, 5] 4.65 4.64 2.11 1.92 1.00 1.10 0.49
[2, 6] 4.62 4.64 2.14 2.03 1.01 1.05 0.50
[2, 7] 4.54 4.63 2.16 2.11 1.02 1.03 0.51
[2, 8] 4.51 4.57 2.17 2.14 1.01 1.01 0.51
[3, 4] 4.54 4.73 2.10 2.01 1.04 1.05 0.49
[3, 5] 4.49 4.60 2.11 2.06 1.03 1.03 0.50
[3, 6] 4.51 4.62 2.15 2.15 1.02 1.00 0.51
[3, 7] 4.45 4.61 2.18 2.22 1.04 0.98 0.52
[3, 8] 4.44 4.55 2.19 2.23 1.02 0.98 0.52
[4, 5] 4.44 4.48 2.12 2.10 1.01 1.01 0.51
[4, 6] 4.52 4.59 2.18 2.24 1.02 0.97 0.52
[4, 7] 4.42 4.59 2.21 2.30 1.04 0.96 0.53
[4, 8] 4.42 4.51 2.21 2.27 1.02 0.97 0.53
[5, 6] 4.59 4.71 2.24 2.38 1.02 0.94 0.53
[5, 7] 4.39 4.62 2.25 2.39 1.05 0.94 0.55
[5, 8] 4.40 4.49 2.22 2.31 1.02 0.96 0.54
[6, 7] 4.19 4.55 2.26 2.40 1.09 0.94 0.57
[6, 8] 4.34 4.37 2.21 2.25 1.01 0.98 0.54
[7, 8] 4.50 4.21 2.15 2.12 0.94 1.02 0.51

mean µ 4.51 4.58 2.17 2.15 1.01 1.02 0.52
std dev σ 0.17 0.12 0.05 0.19 0.03 0.08 0.03

σ/µ 0.038 0.026 0.024 0.089 0.034 0.078 0.050

Table D.3: Horton ratios for the Amazon. (This is the full version of Table 4.2).
Details are as per Table D.1. The topography dataset used here was obtained from
the National Imagery and Mapping Agency (www.nima.mil). The dataset has a
horizontal resolution of approximately 1000 meters yielding and order Ω = 11
network for the Amazon.
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ν = 1 2 3 4 5 6 7 8 9 10
µ = 2 1.68 0 0 0 0 0 0 0 0 0

3 4.87 1.25 0 0 0 0 0 0 0 0
4 12.13 3.78 1.11 0 0 0 0 0 0 0
5 28.68 9.07 2.87 1.03 0 0 0 0 0 0
6 71.4 22.65 7.69 2.98 1.16 0 0 0 0 0
7 185.6 55.99 18.85 7.75 3.28 1.12 0 0 0 0
8 383.9 114.3 39.38 16.84 6.88 2.63 1.03 0 0 0
9 633.3 174.8 63.9 28.2 10.8 4.5 3 0.6 0 0
10 1050 266.3 66 28.67 13.33 4.33 2.67 1 1 0
11 1403 505 121 66 25 12 9 3 1 1

Table D.4: Tokunaga ratios for the Amazon.
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ω range Rn Ra Rl Rl(s)
Ra

Rn

Rl

R
l(s)

lnRl

ln Ra

[2, 3] 4.78 4.71 2.47 2.08 0.99 1.19 0.58
[2, 4] 4.64 4.64 2.38 2.10 1.00 1.13 0.57
[2, 5] 4.55 4.58 2.32 2.12 1.01 1.10 0.56
[2, 6] 4.50 4.57 2.29 2.14 1.02 1.07 0.55
[2, 7] 4.42 4.53 2.24 2.10 1.02 1.07 0.54
[2, 8] 4.31 4.42 2.18 2.02 1.03 1.08 0.53
[3, 4] 4.51 4.58 2.30 2.12 1.02 1.08 0.55
[3, 5] 4.45 4.52 2.26 2.14 1.01 1.06 0.54
[3, 6] 4.42 4.54 2.24 2.16 1.03 1.04 0.54
[3, 7] 4.35 4.49 2.20 2.10 1.03 1.05 0.54
[3, 8] 4.23 4.36 2.13 2.00 1.03 1.07 0.53
[4, 5] 4.39 4.46 2.22 2.15 1.01 1.03 0.54
[4, 6] 4.38 4.54 2.22 2.18 1.03 1.02 0.54
[4, 7] 4.29 4.46 2.17 2.07 1.04 1.04 0.53
[4, 8] 4.15 4.30 2.09 1.95 1.04 1.07 0.52
[5, 6] 4.38 4.62 2.22 2.21 1.06 1.00 0.54
[5, 7] 4.23 4.44 2.13 2.01 1.05 1.06 0.53
[5, 8] 4.05 4.21 2.04 1.86 1.04 1.10 0.51
[6, 7] 4.08 4.27 2.05 1.83 1.05 1.12 0.51
[6, 8] 3.88 4.01 1.95 1.71 1.03 1.14 0.49
[7, 8] 3.70 3.77 1.86 1.59 1.02 1.17 0.47

mean µ 4.32 4.43 2.19 2.03 1.03 1.08 0.53
std dev σ 0.25 0.22 0.14 0.16 0.02 0.05 0.02

σ/µ 0.058 0.050 0.064 0.080 0.016 0.045 0.044

Table D.5: Horton ratios for the Nile. (This is the full version of Table 4.1). Details
are as per Table D.1. The data used here comes from the United States Geological
Survey’s 30 arc second Hydro1K dataset (edcftp.cr.usgs.gov), which has a grid
spacing of approximately 1000 meters. At this resolution, the Nile is an order
Ω = 10 basin.



187

ν = 1 2 3 4 5 6 7 8 9
µ = 2 2.04 0 0 0 0 0 0 0 0

3 6.03 1.2 0 0 0 0 0 0 0
4 14.31 3.45 1.12 0 0 0 0 0 0
5 31.76 8.22 2.99 1.06 0 0 0 0 0
6 67.3 18.36 6.86 3.01 1.18 0 0 0 0
7 122 35.34 14.48 5.68 2.47 1.01 0 0 0
8 150.4 54.24 21.36 9 3.3 1.36 0.79 0 0
9 482.6 157.4 61 26.29 9.43 4.57 2.29 1.57 0
10 3314 968 398 223 118 54 14 8 5

Table D.6: Tokunaga ratios for the Nile.
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ω range Rn Ra Rl Rl(s)
Ra

Rn

Rl

R
l(s)

lnRl

ln Ra

[2, 3] 5.00 4.53 2.16 1.78 0.91 1.21 0.48
[2, 4] 4.79 4.60 2.16 1.96 0.96 1.10 0.49
[2, 5] 4.79 4.63 2.17 2.05 0.97 1.06 0.49
[2, 6] 4.80 4.72 2.21 2.16 0.98 1.02 0.51
[2, 7] 4.68 4.72 2.24 2.20 1.01 1.02 0.52
[2, 8] 4.56 4.64 2.23 2.16 1.02 1.03 0.53
[3, 4] 4.60 4.67 2.16 2.16 1.02 1.00 0.51
[3, 5] 4.72 4.67 2.17 2.17 0.99 1.00 0.50
[3, 6] 4.78 4.79 2.24 2.29 1.00 0.98 0.51
[3, 7] 4.62 4.76 2.27 2.29 1.03 0.99 0.54
[3, 8] 4.48 4.63 2.25 2.21 1.03 1.02 0.54
[4, 5] 4.85 4.68 2.18 2.19 0.96 1.00 0.49
[4, 6] 4.86 4.87 2.28 2.37 1.00 0.96 0.52
[4, 7] 4.58 4.78 2.32 2.33 1.04 0.99 0.55
[4, 8] 4.40 4.60 2.26 2.20 1.04 1.03 0.55
[5, 6] 4.86 5.07 2.39 2.57 1.04 0.93 0.55
[5, 7] 4.40 4.79 2.37 2.37 1.09 1.00 0.58
[5, 8] 4.24 4.51 2.26 2.16 1.07 1.05 0.57
[6, 7] 3.99 4.52 2.36 2.19 1.13 1.08 0.62
[6, 8] 4.00 4.26 2.19 1.97 1.07 1.11 0.56
[7, 8] 4.00 4.01 2.03 1.77 1.00 1.14 0.51

mean µ 4.57 4.64 2.23 2.17 1.02 1.03 0.53
std dev σ 0.30 0.21 0.09 0.19 0.05 0.06 0.04

σ/µ 0.066 0.046 0.038 0.087 0.048 0.063 0.066

Table D.7: Horton ratios for the Congo plus the usual comparisons. The data is
obtained from the same dataset as the Nile, see Table D.5.
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ν = 1 2 3 4 5 6 7 8 9 10
µ = 2 1.55 0 0 0 0 0 0 0 0 0

3 4.46 1.23 0 0 0 0 0 0 0 0
4 11.44 3.78 1.11 0 0 0 0 0 0 0
5 26.88 9.52 3.13 1.13 0 0 0 0 0 0
6 74.48 27.33 9.7 3.96 1.22 0 0 0 0 0
7 158.7 60.38 23.03 9.67 3.5 1 0 0 0 0
8 272.6 112.7 35.81 17.19 6.38 2.15 0.88 0 0 0
9 534.3 214 70.86 29.29 11.86 3.14 2.86 1 0 0
10 1031 526 164 67.5 22.5 9.5 3 2.5 1.5 0
11 538 255 58 24 22 6 3 0 0 0

Table D.8: Tokunaga ratios for the Congo.
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ω range Rn Ra Rl Rl(s)
Ra

Rn

Rl

R
l(s)

lnRl

ln Ra

[2, 3] 4.61 4.16 2.16 1.64 0.90 1.32 0.50
[2, 4] 4.76 4.36 2.07 1.69 0.92 1.22 0.47
[2, 5] 4.78 4.59 2.09 1.86 0.96 1.12 0.47
[2, 6] 4.75 4.68 2.13 1.99 0.99 1.07 0.48
[2, 7] 4.78 4.73 2.16 2.07 0.99 1.05 0.49
[2, 8] 4.82 4.84 2.23 2.15 1.00 1.03 0.51
[2, 9] 4.85 4.91 2.29 2.20 1.01 1.04 0.52
[3, 4] 4.91 4.58 1.98 1.75 0.93 1.13 0.43
[3, 5] 4.84 4.82 2.07 2.01 1.00 1.03 0.46
[3, 6] 4.77 4.84 2.13 2.14 1.02 1.00 0.49
[3, 7] 4.80 4.86 2.19 2.19 1.01 1.00 0.50
[3, 8] 4.85 4.96 2.27 2.27 1.02 1.00 0.52
[3, 9] 4.88 5.01 2.33 2.30 1.03 1.01 0.53
[4, 5] 4.78 5.08 2.16 2.31 1.06 0.93 0.49
[4, 6] 4.69 4.94 2.21 2.34 1.05 0.95 0.51
[4, 7] 4.78 4.91 2.25 2.32 1.03 0.97 0.52
[4, 8] 4.86 5.04 2.34 2.38 1.04 0.98 0.54
[4, 9] 4.90 5.08 2.41 2.39 1.04 1.01 0.55
[5, 6] 4.61 4.80 2.27 2.37 1.04 0.96 0.54
[5, 7] 4.81 4.85 2.30 2.32 1.01 0.99 0.53
[5, 8] 4.92 5.07 2.41 2.41 1.03 1.00 0.55
[5, 9] 4.95 5.11 2.48 2.41 1.03 1.03 0.57
[6, 7] 5.02 4.89 2.33 2.28 0.97 1.02 0.52
[6, 8] 5.07 5.23 2.50 2.45 1.03 1.02 0.56
[6, 9] 5.04 5.22 2.56 2.43 1.04 1.05 0.58
[7, 8] 5.13 5.60 2.67 2.63 1.09 1.01 0.60
[7, 9] 5.03 5.34 2.66 2.47 1.06 1.08 0.60
[8, 9] 4.94 5.08 2.64 2.32 1.03 1.14 0.61

mean µ 4.85 4.91 2.30 2.22 1.01 1.04 0.52
std dev σ 0.13 0.29 0.19 0.25 0.04 0.08 0.04

σ/µ 0.026 0.059 0.081 0.111 0.043 0.080 0.085

Table D.9: Horton ratios for the Kansas river along with various comparisons. The
data comes from the same dataset as the Mississippi, see Table D.1.
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ν = 1 2 3 4 5 6 7 8 9 10 11
µ = 2 1.7 0 0 0 0 0 0 0 0 0 0

3 3.76 1 0 0 0 0 0 0 0 0 0
4 8.82 2.97 1.09 0 0 0 0 0 0 0 0
5 26.48 9.87 3.63 1.16 0 0 0 0 0 0 0
6 69.07 28.92 10.6 3.26 1.09 0 0 0 0 0 0
7 170.3 79.59 29.39 10 3.15 1.11 0 0 0 0 0
8 479.2 238.6 90.43 28.22 11.24 4.3 1.29 0 0 0 0
9 1146 585.1 225.4 73.75 31.06 12.5 3.63 1.38 0 0 0
10 1563 817.7 296.8 93.83 38 20.33 7.83 1.67 0.33 0 0
11 3684 1619 708 209 88.5 48.5 18.5 7 0.5 0.5 0
12 1274 627 216 55 27 14 3 1 1 1 0

Table D.10: Tokunaga ratios for the Kansas.
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Notation

F , scaling function for Full Hack
distribution, 74

Fa, area scaling function for gener-
alized version of Hack’s law,
74

Fl, stream length scaling function
for generalized version of Hack’s
law, 73

G, scaling function for Full Hack
distribution, 74

L‖ = L, longitudinal length of a
basin, 38, 71

L⊥, transverse width of a basin, 38,
71

Na, prefactor in expression for P (a),
74

Nl, prefactor in expression for P (l),
74

P (l
(s)
ω , ω), probability density func-

tion for stream segment lengths,
l(s), 101

P (a), probability density function
for area a, 74

P (a, l), full Hack distribution, 72,
74

P (aω, ω), probability density func-
tion for drainage basin ar-
eas, a, 102

P (l), probability density function
for stream length l, 74

P (lω, ω), probability density func-
tion for main stream lengths,
l, 102

P (n), probability density function
for number of steps to first
return of a random walk,
75

P (nΩ,ω, ω), probability density func-
tion for the number of or-
der ω sub-basins of an or-
der Ω basin, 102

RT , side stream ratio in Tokunaga’s
law (equivalent to Rl(s) =
Rl), 40, 126

Rl(s) , Horton ratio for the Horton
law of stream segment lengths,
41, 100, 127

Ra, Horton ratio for the Horton law
of drainage areas, 42, 100,
127

Rl, Horton ratio for the Horton law
of main stream lengths, 100,
127

Rn, Horton ratio for the Horton law
of stream numbers, 41, 100,
127

T1, average number of side streams
of order ω−1 per absorbing
stream of order ω, 40, 126

[·], rounding to the nearest integer,
136

214
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P (a | l), conditional probability of
area a for fixed stream length
l, 74

P (l | a), conditional probability of
stream length l for fixed area
a, 73

η, standard deviation coefficient for
Hack’s law, 77

γ, exponent in scaling law for P (l),
74

l
(s)
ω , order ω stream segment length,

124

ρ, drainage density, 122

τ , exponent in scaling law for P (a),
74

〈·〉, ensemble average, 70

〈l (s)
ω 〉, average order ω stream seg-

ment length, 99

〈aω〉, average order ω basin area,
99

〈lω〉, average order ω main stream
length, 99, 127

θ, mean coefficient for Hack’s law,
73, 77

ξ, length scale of fluctuations, 102

ξl(s), parameter for exponential dis-
tribution of stream segment
lengths, 123

ξt, parameter for exponential dis-
tribution of Tokunaga ra-
tios, 122

{Tω,ω′}, Tokunaga ratio, 39

a, drainage basin area, 38, 70

d, exponent for scaling law relating
l and L‖, 71

h, Hack’s exponent, 38, 70

l, main stream length of a basin,
38, 70

lω, main stream length for an order
ω basin, 124

nω, number of order ω stream seg-
ments, 41, 99, 127
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